Humboldt-Universität zu Berlin

DISSERTATION

Biochemische und biophysikalische Charakterisierung von Rhodopsin-Guanylylzyklasen

Zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.) in Biophysik

eingereicht an der Lebenswissenschaftlichen Fakultät

von

Ulrike Scheib (Dipl. Biochem.)

Präsidentin: Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan: Prof. Dr. Bernhard Grimm

Gutachter: 1. Prof. Dr. Peter Hegemann

2. Prof. Dr. Birte Höcker

3. Prof. Dr. Holger Dobbek

Datum der mündlichen Verteidigung: 21.09.2018

Für meine Eltern

Abstract

Rhodopsin-guanylyl cyclases (RhGC) are unique photoreceptors recently discovered in *Blastocladiomycota* fungi¹. In RhGCs the light-sensitive microbial rhodopsin domain is covalently linked to a type III guanylyl cyclase. Guanylyl cyclases form the second messenger cGMP, which together with cAMP regulates a variety of biological processes ^{2–12}. Due to their architecture, RhGCs are classified as microbial enzyme rhodopsins. In the present work, the five newly discovered RhGCs were characterized using different biochemical and biophysical methods. Electrophysiological measurements provided indirect evidence for green lightactivated cGMP synthesis of the RhGCs from Blastocladiella emersonii (Be) and Catenaria anguillulae (Ca). The light-activated guanylyl cyclase function could be confirmed by ELISA experiments and after purification of these photoreceptors. Green illumination led to a 100-fold or 200-fold increase in cGMP with a v_{max} of 1.8 or 11.6 µmol min⁻¹ mg_{protein}⁻¹ for BeRhGC or CaRhGC. In the dark the cGMP concentration remained at the level of control cells for both photoreceptors. A kinetic analysis of the isolated guanylyl cyclase domains (Be/CaGC) revealed the constitutive activity of the enzymatic domain, which was 3-6x reduced compared to the fulllength photoreceptors. A spectroscopic characterization of the Be/Ca rhodopsin domains allowed the identification of photocycle intermediates, which are typical for microbial rhodopsins. The M-intermediates decayed slowly with a $\tau \sim 100$ ms for BeRh and $\tau \sim 500$ ms for CaRh. The Be/Ca rhodopsin domains were mutated to change the kinetic and spectroscopic parameters of the photoreceptors. In addition, the substrate specificity of the RhGCs was switched to ATP by a double mutation (E497K/C566D) in the catalytic domain. The lightinduced cAMP synthesis of the generated rhodopsin-adenylyl cyclases (Be/CaRhACs) was shown in Xenopus oocytes and after purification of the proteins. Compared to BeRhAC, CaRhAC showed an increased light-to-dark activity (6x) and a decreased activity in darkness (5.5x). To get further insight into the recently discovered RhGCs, the isolated cyclase domains, Be/CaGC and CaAC, were crystallized in the presence of NTP analogues. High-resolution monomeric GC structures without a bound ligand were produced. Additionally, a 2.25 Å structure of the mutated cyclase, CaAC, with the ATP analogue ATP α S was solved. The CaAC structure shows an antiparallel arrangement of the dimer subunits and the nucleotide base is bound by the previously mutated residues. Due to the similarity to other type III cyclases, a classical reaction sequence for RhGCs can be deduced. Finally, the applicability of Ca/BeRhGC and CaRhAC was tested in hippocampal rat neurons and CHO cells. These application-oriented approaches show that both RhGCs and YFP-CaRhAC can be used as optogenetic tools to precisely control cGMP and cAMP with light.

Zusammenfassung

Rhodopsin-Guanylylzyklasen (RhGC) sind einzigartige Photorezeptoren, die kürzlich in Pilzen der Abteilung *Blastocladiomycota* entdeckt wurden¹. RhGCs gehören zu den Enzym-Rhodopsinen und die Licht-sensitive mikrobielle Rhodopsin Domäne ist kovalent mit einer Typ III Guanylylzyklase verbunden. Guanylylzyklasen bilden den sekundären Botenstoff cGMP, der zusammen mit cAMP eine Vielzahl biologischer Prozesse reguliert²⁻¹². In der vorliegenden Arbeit wurden die fünf neuentdeckten RhGCs mithilfe unterschiedlicher biochemischer und biophysikalischer Methoden charakterisiert. Elektrophysiologische Messungen erbrachten einen indirekten Nachweis für eine Grünlicht-aktivierte cGMP Synthese bei den RhGCs aus Blastocladiella emersonii (Be) und Catenaria anguillulae (Ca). Die Licht-aktivierte Guanylylzyklasen Funktion dieser RhGCs konnte durch ELISA Experimente und nach Aufreinigung der Photorezeptoren bestätigt werden. Belichtung führte zu einer 100-fachen oder 200-fachen Erhöhung von cGMP mit einem vmax von 1.8 oder 11.6 µmol min⁻¹ mg_{protein}⁻¹ bei BeRhGC oder CaRhGC. Im Dunkeln verblieb bei beiden Photorezeptoren die cGMP-Konzentration auf dem Niveau von Kontrollzellen. Durch eine enzymkinetische Analyse der isolierten Guanylylzyklase Domänen (Be/CaGC) konnte die konstitutive Aktivität der enzymatischen Einheit gezeigt werden, die im Vergleich zu den Volllängen Photorezeptoren 3-6x reduziert war. Weiterhin wurden die Photozyklen der isolierten Rhodopsin Domänen mithilfe spektroskopischer Methoden untersucht und Photointermediate identifiziert, die typisch für mikrobielle Rhodopsine sind. Die M-Intermediate zerfielen langsam mit $\tau \sim 100$ ms bei BeRh und τ \sim 500 ms bei CaRh. Um die kinetischen und spektroskopischen Parameter der Photorezeptoren zu verändern, wurden die Be/Ca Rhodopsin Domänen mutiert. Zusätzlich wurde die Substratspezifität der RhGCs geändert und eine Doppelmutation (E497K/C566D) in der katalytischen Domäne erzeugte Rhodopsin-Adenylylzyklasen (RhACs). Die Licht-induzierte cAMP Synthese der RhACs wurde in Xenopus Oocyten getestet und im Vergleich zu BeRhAC zeigte CaRhAC eine erhöhte Licht-zu-Dunkel-Aktivität (6x) einhergehend mit einer verringerten Dunkelaktivität (5.5x). Um weitere Einblicke in die kürzlich entdeckten RhGCs zu erhalten, wurden die isolierten Zyklase Domänen, Be/CaGC und CaAC, in Gegenwart von NTP Analoga kristallisiert. Neben hochauflösenden monomeren GC Strukturen ohne Ligand wurde eine 2.25 Å Struktur der mutierten Zyklase, CaAC, mit dem ATP Analogon ATPαS gelöst. Die CaAC Struktur zeigt ein antiparalleles Arrangement der Dimer-Untereinheiten und die Bindung der Nukleotidbase durch die zuvor mutierten Reste. Aufgrund der Ähnlichkeit zu anderen Typ III Zyklasen kann auf einen klassischen Reaktionsablauf bei RhGCs rückgeschlossen werden. Abschließend wurde die Anwendbarkeit von Ca/BeRhGC sowie CaRhAC in hippokampalen Rattenneuronen und CHO Zellen getestet. Diese Experimente zeigen, dass sowohl RhGCs als auch YFP-CaRhAC als optogenetische Werkzeuge eingesetzt werden können, um die Zellbotenstoffe cGMP bzw. cAMP präzise mit Licht zu regulieren.

Danksagung

Zu Beginn dieser Monographie möchte ich zuerst vielen Menschen danken, ohne die diese Arbeit in dieser Form nicht möglich gewesen wäre. Zuerst bedanke ich mich bei Prof. Peter Hegemann, für die Möglichkeit in seiner Arbeitsgruppe am spannenden Thema der Rhodopsin-Guanylylzyklasen zu forschen und über dieses Thema promovieren zu dürfen. Darüber hinaus danke ich Peter für seinen Input, seine Unterstützung und Förderung. Bei Prof. Holger Dobbek und Prof. Birte Höcker möchte ich mich für die Begutachtung meiner Arbeit bedanken und danke Birte für die Vorerfahrung in ihrer Arbeitsgruppe, die mich gut für die Doktorarbeit gewappnet hat. Prof. Edda Klipp und Prof. Enrico Klotzsch danke ich, Teil der Prüfungskommission bei der Disputation zu sein. Bei meinem Kollegen Dr. Matthias Broser bedanke ich mich für die Betreuung und Zusammenarbeit am Kristallisationsthema und bei der letzten Publikation; ich konnte viel lernen. Darüber hinaus möchte ich Matthias und Clara Kind für das Korrekturlesen meiner Doktorarbeit danken. Maila Reh danke ich für die engagierte und ausgezeichnete Zuarbeit in der Elektrophysiologie und für die Übernahme diverser organisatorischer Aufgaben im Erdgeschoss. Bei Christina Schnick, Melanie Meiworm und Tharsana Tharmalingam möchte ich mich für deren exzellente Unterstützung bei der Proteinaufreinigung und bei Klonierungstätigkeiten bedanken. Dr. Shatanik Mukherjee und Dr. Katja Stehfest danke ich für den Input und die wissenschaftliche Zusammenarbeit bei der Enzymkinetik und der Spektroskopie. Dr. Arend Vogt möchte ich für die Einführung in die Elektrophysiologie danken. Den Studenten Oliver Gernetzki, Nicolas Liem, Rodrigo Fernandez und Jan-Phillip Kehl, die ich während meiner Doktorarbeit betreute, danke ich für ihre wissenschaftliche Zuarbeit und für eine angenehme Laborzeit. Bei Roman Fudim, Dr. Benjamin Krause, Simon Kelterborn und Lotte Teufel möchte ich mich für die emotionale Unterstützung bedanken und für die heiteren Stunden in der Mensa. Darüber hinaus bedanke ich mich bei der ganzen Hegemann Arbeitsgruppe für die kollegiale und angenehme Arbeitsatmosphäre und für die Unterstützung auf allen Ebenen. Weiterhin bedanke ich mich bei unseren Kollaborationspartnern in Hamburg und Würzburg für die gute wissenschaftliche Zusammenarbeit. Abschließend geht ein großer Dank an meine Familie, Matthias Bailer und Clara Kind für den emotionalen Halt und für das Ohr in schweren Zeiten. Meinen Freunden in Berlin danke ich für eine wunderschöne Zeit neben der Doktorarbeit.

Veröffentlichungen

Inhalte der vorliegenden Arbeit wurden in [2] und [5] veröffentlicht.

- [1] F. Richter, U. S. Scheib, J. Mehlhorn, R. Schubert, J. Wietek, O. Gernetzki, P. Hegemann, T. Mathes, and A. Möglich, "Upgrading a microplate reader for photobiology and all-optical experiments.," *Photochem. Photobiol. Sci.*, vol. 14, no. 2, pp. 270–9, Feb. 2015.
- [2] U. Scheib, K. Stehfest, C. E. Gee, H. G. Körschen, R. Fudim, T. G. Oertner, and P. Hegemann, "The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.," *Sci. Signal.*, vol. 8, no. 389, p. rs8, Aug. 2015.
- [3] A. Penzkofer, U. Scheib, P. Hegemann, and K. Stehfest, "Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo - Dynamics of the Rhodopsin Domain of the Rhodopsin - Guanylyl Cyclase from the Aquatic Fungus Blastocladiella emersonii," *BAOJ Phys.*, vol. 2, no. 2, 2016.
- [4] A. Penzkofer, U. Scheib, K. Stehfest, and P. Hegemann, "Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae," *Int. J. Mol. Sci.*, vol. 18, no. 10, p. 2099, Oct. 2017.
- U. Scheib, M. Broser, O. M. Constantin, S. Yang, S. Gao, S. Mukherjee, K. Stehfest, G. Nagel, C. E. Gee, and P. Hegemann, "Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain.," *Nat. Commun.*, vol. 9, no. 1, p. 2046, May 2018.

Inhaltsverzeichnis

A	bstract		II
Z	usamme	nfassung	IV
D	anksagu	ng	VI
1	Einleitung		1
	1.1	Die Entdeckung eines untypischen Rhodopsins	1
	1.2	Rhodopsine	3
	1.2.1	Licht-getriebene Ionenpumpen am Beispiel von Bacteriorhodopsin	6
	1.2.2	2 Kanalrhodopsine	7
	1.2.3	3 Sensorische Rhodopsine	10
	1.2.4	Enzym-Rhodopsine	11
	1.3	Typ III Adenylyl und Guanylylzyklasen	13
	1.3.1	Das Zyklase Transducer Element	16
	1.3.2	2 Der Katalyse-Mechanismus und die Struktur von Typ III Zyklasen	17
	1.4	Photoaktivierte Zyklasen	20
	1.5	Zielstellung	22
2	Erge	bnisse	
	2.1	Sequenzanalyse der RhGCs	
	2.2	Expression und Charakterisierung der RhGCs in Xenopus Oocyten	
	2.3	BeRhGC Charakterisierung	
	2.3.1	Expression und Charakterisierung von BeRhGC in Xenopus Oocyten	
	2.3.2	2 Spektroskopische Analyse der aufgereinigten Rhodopsin Domäne (Be)	30
	2.3.3	B Enzymatische Aktivität des Volllängen BeRhGC Konstrukts	32
	2.3.4	4 Charakterisierung der isolierten BeGC Domäne, ohne und mit Coiled-Coi	1 33
	2.3.5	5 Die Bedeutung des N'-Terminus für die BeRhGC Funktion	
	2.3.6	6 Modifikation der BeRhGC Kinetik	40
	2.3.7	7 Modifikation der spektralen Eigenschaften von BeRhGC	43
	2.3.8	Anwendung des Volllängen BeRhGC in CHO-K1 Zellen	44

	2.3.9	9 Anwendung von BeRhGC in hippokampalen Rattenneuronen	45
	2.4	CaRhGC Charakterisierung	47
	2.4.1	1 Vergleich von CaRhGC und BeRhGC in Xenopus Oocyten	49
	2.4.2	2 Spektroskopische Analyse der aufgereinigten Rhodopsin Domäne (Ca)	51
	2.4.3	3 Enzymatische Aktivität des Volllängen CaRhGC Konstrukts	53
	2.4.4	4 Enzymatische Aktivität der isolierten CaGC Domäne	54
	2.4.5	5 Die Bedeutung des N'-Terminus für die CaRhGC Funktion	56
	2.4.6	6 Modifikation der CaRhGC Kinetik	58
	2.4.7	7 Modifikation der spektralen Eigenschaften von CaRhGC	58
	2.4.8	8 Veränderung des CaRhGC Linkers, Design von RhGC Chimären	58
	2.4.9	9 Anwendung von CaRhGC in hippokampalen Rattenneuronen	61
	2.5	Verkürzte RhGCs aus Chytridiomycota	63
	2.6	Mutation der Rhodopsin-Guanylylzyklasen zu Rhodopsin-Adenylylzyklasen	64
	2.6.1	1 Enzymatische Aktivität des Volllängen CaRhAC Konstrukts (E497K/C5	66D)
	und	der isolierten CaAC Domäne	68
	2.6.2	2 Anwendung von CaRhAC in hippokampalen Rattenneuronen	72
	2.7	Kristallisation der isolierten Zyklase Domänen	74
	2.7.1	1 Kristallisation der Guanylylzyklasen, BeGC & CaGC	74
	2.7.2	2 Die Liganden-gebundene CaAC Kristallstruktur (2.25 Å)	78
3	Disk	cussion	85
	3.1	Verbreitung der RhGCs	85
	3.2	Die Rolle des untypischen N'-Terminus	86
	3.3	Der Photozyklus der Be/Ca Rhodopsin Domäne	86
	3.4	Vergleich der Aktivitäten der RhGCs und der isolierten Zyklasen	88
	3.5	Das optogenetische Potential von Be/CaRhGC	88
	3.6	RhACs	89
	3.7	CaAC Kristallstruktur und mechanistische Hintergründe	90
	3.8	Der intramolekulare Signalweg	92
	3.8.1	1 Hypothese über die intramolekulare Signalweiterleitung bei RhGCs	97
	3.8.2	2 Ausblick	98

4	Metl	hoden	100
	4.1	Zugangsnummern	100
	4.2	Molekularbiologie	100
	4.2.1	Gene und Vektoren	100
	4.2.2	2 Kompetente <i>E.coli Zellen</i>	100
	4.2.3	Gelelektrophorese zur Trennung von DNA Fragmenten	101
	4.2.4	Generierung neuer DNA Konstrukte mithilfe von Restriktionsenzymen	101
	4.2.6	6 Generierung neuer DNA Konstrukte mithilfe der ortsgerichteten Mutagenese	103
	4.2.7	7 Transformation und Isolation von DNA-Plasmiden	103
	4.3	Elektrophysiologische Charakterisierung von RhGCs/RhACs in Oocyten	104
	4.3.1	Vorbereitung I: RNA Synthese	104
	4.3.2	2 Vorbereitung II: Präparation und Injektion der <i>Xenopus</i> Oocyten	105
	4.3.3	B Elektrophysiologische Messungen (TEVC) in Xenopus Oocyten	105
	4.3.4	Quantifizierung von cAMP/cGMP in Oocyten Lysaten mittels ELISA	106
	4.3.5	5 RhGC Nachweis in Oocyten-Membranen durch Immunoblots	106
	4.4	Elektrophysiologische Charakterisierung von RhGCs/RhACs in Rattenneuronen.	107
	4.4.1	BeRhGC Ganzzell Patch-Clamp Experimente	107
	4.4.2	2 Vergleich von BeRhGC und CaRhGC/YFP-CaRhGC und Charakterisierung	von
	YFP	-CaRhAC	108
	4.5	Aufreinigung und Charakterisierungen verschiedener RhGC/RhAC Konstrukte	109
	4.5.1	Expression und Aufreinigung von BeRh in <i>P. pastoris</i>	109
	4.5.2	2 Expression und Aufreinigung von CaRh/RhGCs/RhACs in Insektenzellen	110
	4.5.3	8 Expression und Aufreinigung von BeGC/CaGC/CaAC	111
	4.5.4	4 Spektroskopische Analysen	112
	4.5.5	5 In-vitro Enzymaktivitätsmessungen mittels HPLC basierter cNMP Detektion	112
	4.5.6	6 Charakterisierung der Bindungsaffinität von CaAC/CaGC/BeGC	114
	4.5.7	7 Kristallisation von BeGC/CaGC/CaAC	114
	4.6	Bioinformatische Analysen	116

5	Anh	ang	117
	5.1	Sequenz-Vergleich der Rhodopsin Domäne	117
	5.2	Sequenz-Vergleich des Coiled-Coils und der Zyklase Domäne	119
	5.3	Coiled-Coil Wahrscheinlichkeit der Ca/BeRhGC N'-Termini	121
	5.4	Coiled-Coil Wahrscheinlichkeit des CaRhGC Linkers	123
	5.5	Python Skript zur Auswertung der TEVC Daten	124
	5.6	Ergänzende elektrophysiologischen Messungen	127
	5.7	Sequenz-Vergleich der RhGCs aus Blastocladiomycota und Chytridiomycota	130
	5.8	Kristallographische Tabelle der Be/CaGC Strukturmodelle	132
	5.9	Einblicke in tmAC und die modellierten Be/CaGC Bindetaschen	135
	5.10	Die Signalübertragung bei bPAC	137
	5.11	CTE Interaktionen	138
6	Refe	erenzen	140
7	Abb	ildungsverzeichnis	162
8	Tabe	ellenverzeichnis	164
9	Abk	ürzungsverzeichnis	165
1() Eige	enständigkeitserklärung	168

1 Einleitung

Die Wahrnehmung von Licht ist eine Grundvoraussetzung für das Leben auf der Erde und die Natur entwickelte verschiedene Lichtsensoren, um die Energie der Photonen in biologische Systeme zu integrieren. Diesen Photorezeptoren ist ein ähnlicher Aufbau gemein und ein Polypeptid umgibt ein organisches Molekül, den Chromophor, der aufgrund seines delokalisierten Elektronensystems, das Licht an der Erdoberfläche (~350-750 nm) absorbieren kann. Entsprechend der Chromophor-Beschaffenheit unterscheidet man sechs Photorezeptor-Klassen: Rhodopsine, Xanthopsine, Phytochrome, Cryptochrome, Licht-Sauerstoff-Spannungs-Sensoren und Blaulicht-Sensoren, die Flavin-Adenin-Dinukleotid (FAD) benutzen ¹³⁻¹⁶. Rhodopsine initiieren in Bakterien, Archaeen und Eukaryoten eine spezifische Lichtantwort und bestehen aus sieben transmembran-Helices, die den Licht-absorbierenden Chromophor, Retinal umgeben (Abb. 1) ^{17,18}.

Rhodopsine sind Membranproteine, die in allen Domänen des Lebens vorkommen. Links: Gezeigt ist ein Vertreter der Rhodopsin-Klasse, Bacteriorhodopsin (PDB: 1C3W), das wie andere Rhodopsine aus sieben transmembran-Helices (blau) und dem Licht-absorbierenden Chromophor Retinal (magenta) besteht. Rechts: Protein-gebundenes Retinal in der protonierten Form.

1.1 Die Entdeckung eines untypischen Rhodopsins

Ein Rhodopsin mit einem einzigartigen Aufbau wurde kürzlich in dem aquatischen Pilz *Blastocladiella emersonii* entdeckt¹. Die Arbeitsgruppe von Suely Gomes interessierte sich für die Lichtrezeptoren dieser Pilze, die zur Abteilung der *Blastocladiomycota* zählen, da sich die Zoosporen dieses Pilzes zu grünem Licht hinbewegen (Abb. 2). Ein phototaktisches Verhalten wurde bei verwandten Pilzen der Abteilung *Chytridiomycota* erstmals 1878 beobachtet¹⁹. Ergänzend zu dieser Studie wurde 1997 ein Zusammenhang zwischen der Phototaxis und Rhodopsinen bei *Blastocladiomycota* festgestellt²⁰. Die Existenz eines Retinal-bindenden

Photorezeptors wurde auch bei *Blastocladiella emersonii* bestätigt, da die Zugabe eines Inhibitors der Retinal-Synthese (Norflurazon) die Phototaxis der Zoosporen eingeschränkte und externe Zugabe von Retinal diesen Effekt wieder rückgängig machte. Darüber hinaus konnte ein intrazellulärer Anstieg des sekundären Botenstoffs cGMP nach Grün-Belichtung der Zoosporen beobachtet werden ¹. Eine Genomanalyse von *Blastocladiella emersonii* führte schlussendlich zur Entdeckung einer mikrobiellen Rhodopsin Sequenz (s.u.), die über einen untypisch langen C'-Terminus verfügt ¹. Dieser C'-terminale Bereich ist homolog zu Typ III Guanylylzyklasen, die GTP zu cGMP zyklisieren. cGMP reguliert eine Vielzahl physiologischer und pathophysiologischer Prozesse, wie z.B. die Entspannung der vaskulären Muskulatur, den Blutdruck, die Blutplättchen-Aggregation, den Sehprozess oder den Energiehaushalt ^{2–7}. Bei *Blastocladiomycota* wurde ein Einfluss von cGMP auf die Bildung der motilen Zoosporen am Ende der Sporulationsphase festgestellt ^{21–23}.

Abb. 2 Zoosporen von *Blastocladiella emersonii* bewegen sich zu grünem Licht Lichtmikroskopische Beobachtung der Phototaxis von Zoosporen aus *Blastocladiella emersonii*, die grünem Licht (links, 522 ± 17 nm; 4.4 mW cm⁻²) oder Dunkelheit (rechts) ausgesetzt waren.

Eine direkte Verknüpfung zwischen einem Rhodopsin und einer Zyklase wurde bisher für kein anderes Rhodopsin beschrieben und die tatsächliche Expression der neu-entdeckten Rhodopsin-Guanylylzyklase wurde immunhistochemisch im Augenfleck der *B. emersonii* Zoospore nachgewiesen ¹. Während Rhodopsin-Guanylylzyklasen Sequenzen ebenfalls bei den verwandten Pilzen *Allomyces macrogynus* (Am) und *Catenaria anguillulae* (Ca) vorherrschen, konnte eine Verbreitung des Photorezeptors außerhalb der *Blastocladiomycota* nicht festgestellt werden ¹. Neben der Rhodopsin-Guanylylzyklase wurde in den entsprechenden Pilzgenomen die Sequenz eines "cyclic nucleotide-gated channels" (CNG) gefunden, der ebenfalls an der Phototaxis beteiligt ist ²⁴. Mithilfe spezifischer Inhibitoren und spannungsabhängiger Fluorophore konnte gezeigt werden, dass dieser Kanal durch cGMP aktiviert wird und K⁺ Ionen leitet ²⁴. Zusätzlich unterdrückte der CNG-Inhibitor L*-cis*-Diltiazem die Schwimmbewegung der Zoosporen ²⁵. Zusammenfassend für die experimentellen und theoretischen Ergebnisse, postulierte die Arbeitsgruppe von Suely Gomes, dass die Rhodopsin-Guanylylzyklase der Phototaxis-steuernde Photorezeptor bei *Blastocladiella emersonii* ist und die Zoosporen-Motilität über die cGMP-vermittelte Öffnung des K⁺-leitenden CNG Kanals reguliert wird ^{1,24}.

Um zu verstehen, warum es sich bei der Rhodopsin-Guanylylzyklase um ein untypisches Rhodopsin handelt, wird der Leser im Folgenden mit dieser Photorezeptor-Klasse vertraut gemacht. Die Abkürzung "RhGC" wird nachfolgend für die Rhodopsin-Guanylylzyklase genutzt, synonyme Bezeichnungen sind: BeGC1¹, BeCyclOp²⁶ und RhoGC²⁷.

1.2 Rhodopsine

Die heptahelikalen Rhodopsine werden gemäß ihrer Aminosäuren-Sequenz in Typ I (mikrobiell) und Typ II (metazoisch) Rhodopsine unterteilt (Abb. 3, Abb. 4a). Typ I Rhodopsine kommen bei Archaeen, Bakterien und einfacheren Eukaryoten vor und sind dort hauptsächlich für den Energiehaushalt und die Phototaxis verantwortlich ^{17,18}. Die Gruppe der Typ I Rhodopsine ist divers und Vertreter dieser Klasse sind z.B. Licht-getriebene H⁺/Na⁺/Cl⁻ Pumpen oder Licht-aktivierte Anionen bzw. Kationen Kanäle (Kanalrhodopsine). Darüber hinaus gehören sensorische Rhodopsine zu den mikrobiellen Rhodopsinen, die zusammen mit einem nicht kovalent gebundenen Transducer-Protein die Phototaxis induzieren ^{28–32}. Ferner gehört die neu-definierte Klasse der Enzym-Rhodopsine zu den mikrobiellen Rhodopsinen.

Abb. 3 Übersicht über Typ I und Typ II Rhodopsine

Typ I Rhodopsine sind mannigfaltig in ihrer Funktion und kommen als Licht-getriebene Pumpen (Na⁺, H⁺, Cl⁻), Licht-aktivierte Anionen/Kationen Kanalrhodopsine, sensorische Rhodopsine oder Enzym-Rhodopsine in Archaeen, Bakterien und eukaryotischen Einzellern vor. Typ II Rhodopsine sind spezielle G-Protein gekoppelte Rezeptoren (GPCRs), die hauptsächlich den Sehprozess in höheren Metazoen initiieren. Gegenüber den Typ I Rhodopsinen sind Typ II Rhodopsine weniger divers und gehören zu den G-Protein gekoppelten Rezeptoren, die in komplexeren Eukaryoten den Sehprozess initiieren ^{33,34}. Hierbei induziert das belichtete Rhodopsin den Austausch von GDP gegen GTP im gebundenen G-Protein (Gt) (Abb. 3), das seinerseits eine Phosphodiesterase aktiviert, die cGMP abbaut. Eine Reduktion von cGMP führt zum Schließen von CNG-Kanälen, die durch cyclische Nukleotide geöffnet werden. Dies unterbricht die Ausschüttung des Neurotransmitters Glutamat, woraufhin die Reizweiterleitung durch den Sehnerv stattfinden kann ^{35,36}.

Der Licht-absorbierende Chromophor Retinal ist bei beiden Rhodopsin-Typen über die E-Aminogruppe eines Lysins der Helix 7 gebunden (Abb. 4b)^{17,18}. Diese Retinal-Schiffbase (RSB) liegt im Dunkelzustand protoniert vor (RSBH+) und wird in der Regel von Wasser und/oder negativ geladenen Aminosäuren (z.B. Aspartat oder Glutamat) umgegeben (Abb. 4b), die als Gegenionen die positive Ladung der RSBH+ stabilisieren^{17,18}. Obgleich sich die Retinal-Isomere beider Rhodopsine unterscheiden, ist die Isomerisierung des Chromophors der primäre Prozess, der nach Absorption eines Photons innerhalb von Femtosekunden abläuft ^{37,38}. Bei Typ I Rhodopsinen isomerisiert vornehmlich all-trans, 15-anti Retinal zu 13-cis, 15-anti Retinal und lokale bzw. globale Änderungen der Proteinkonformation folgen auf die Retinal-Isomerisierung (Abb. 4c). Der all-trans Ausgangszustand wird nach Durchlaufen mehrerer Photointermediate dem sogenannten Photozyklus - wiederhergestellt (Abb. 4d). Diese Photointermediate verfügen über unterschiedliche Absorptionseigenschaften entsprechend der Energiedifferenz zwischen dem elektronischen Grundzustand (S0) und dem angeregten Zustand (S1). Diese Energiedifferenz wird durch die Größe des delokalisierten pi-Elektronensystems bestimmt, die durch a) die Planarität des Chromophors, b) die Retinal-Isomer-Konfiguration, c) den Protonierungszustand der RSB und d) elektrostatische Wechselwirkungen zwischen dem Retinal und der Umgebung (Protein/Wasser) beeinflusst wird¹⁷.

Bei Typ II Rhodopsinen findet die Isomerisierung von 11-*cis* Retinal zu *all-trans* Retinal statt. Letzteres verlässt bei den meisten Vertebraten das Opsin nach Durchlaufen weiterer Photointermediate. Eine wiederholte Aktivierung der Typ II Rhodopsine kann erst durch erneute Bindung von 11-*cis* Retinal erfolgen, das durch Retinal-Isomerasen bereitgestellt wird ^{39,40}.

Bei beiden Rhodopsin-Klassen treten in der Regel Photointermediate auf, bei denen die RSB deprotoniert vorliegt (Abb. 4d). Diese M/Meta-II Zustände bei Typ I/Typ II Rhodopsinen stehen im Zusammenhang mit globalen Konformationsänderungen (Helix Bewegungen), die oftmals mit einem aktiven Zustand des Photorezeptors, dem Signalzustand, korrelieren. Im Gegensatz zu Typ II Rhodopsinen, wird bei Typ I Rhodopsinen die RSB im Verlauf des Photozyklus reprotoniert ^{17,18}.

Abb. 4 Exemplarischer Aufbau und Photochemie eines Typ I Rhodopsins am Beispiel von Bacteriorhodopsin (BR, PDB: 1C3W)

(a) 7 transmembran-Helices (blau-violett) umgeben den Licht-absorbierenden Chromophor *all-trans*,15-*anti* Retinal (gelb). (b) Vergrößerung der Retinal-Bindetasche; der Chromophor ist kovalent an ein Lysin (in BR: K216, blau) der Helix 7 gebunden. Aromatische Aminosäuren bilden einen hydrophoben Käfig um das Retinal. Die Gegenionen D85 und D212 (rot) stabilisieren bei BR die Ladung der protonierten Retinal-Schiffbase (RSB). Hierbei vermittelt ein Wasser (H₂O 402) die Interaktion zum primären Gegenion D85. (c) Bei Typ I Rhodopsinen erfolgt die Isomerisierung von *all-trans*,15-*anti* Retinal zu 13-*cis*,15-*anti* Retinal. (d) Gelbes Licht induziert bei BR einen Photozyklus^{41,42}, der mit der Isomerisierung des Retinals beginnt. Nach Durchlaufen der J, K und L Intermediate wird beim Übergang von M1₄₁₂ zu M2₄₁₂ ein Proton an die extrazelluläre Seite abgeben und Helix 6 bewegt sich nach außen. In den M-Zuständen ist die RSB deprotoniert und das Absorptionsmaximum liegt im Blauen. Die Reprotonierung erfolgt beim Übergang in den N₅₆₀-Zustand. Die Re-Isomerisierung zum *all-trans* Retinal findet während des N zu O Übergangs statt.

Trotz des ähnlichen Aufbaus besteht keine Sequenzhomologie zwischen Typ I und Typ II Rhodopsinen und bei mikrobiellen Rhodopsinen sind die intrazellulären Schleifen, an die das G-Protein bei Typ II Rhodopsinen bindet, stark verkürzt. Die Bindetasche mikrobieller Rhodopsine zeichnet sich durch stark konservierte Reste aus, wie z.B. aromatische Reste (Tryptophane in Helix 6, WXXYPXXW Motiv, Phenylalanine und Tyrosine), die den *all-trans* Chromophor einbetten (Abb. 4b). Helix 3 ist hoch konserviert und enthält oftmals eine Carboxylgruppen-Aminosäure, die die RSB reprotoniert (Sequenz-Vergleich, Anhang Abb. 48). Darüber hinaus befindet sich in dieser Helix ein positiv geladenes Arginin und eine weitere Carboxylgruppe, die als RSB-Gegenion agiert. Diese Reste bilden zusammen mit der positiv geladenen RSBH einen Komplex, der durch ein zweites Gegenion in Helix 7 (D/E) stabilisiert werden kann. Unterschiede der Retinal-Bindetasche, insbesondere der Gegenionen, bestimmen maßgeblich die Funktion des mikrobiellen Rhodopsins ^{17,18}.

Da bei der neu-entdeckten Rhodopsin-Guanylylzyklase eine Sequenzhomologie zu Typ I festgestellt wurde (Anhang Abb. 48)¹, wird der Aufbau, die Funktion und der Photozyklus dieser Rhodopsin-Klasse im Folgenden vertieft.

1.2.1 Licht-getriebene Ionenpumpen am Beispiel von Bacteriorhodopsin

Wichtige Vertreter der Typ I Rhodopsine sind Licht-getrieben Pumpen, die die Photonenenergie benutzen, um H⁺/Na⁺ Ionen aus der Zelle bzw. Cl⁻ in die Zelle zu transportieren. Der so aufgebaute elektrochemische Gradient kann für den ATP Aufbau genutzt werden 43. Die mechanistischen Hintergründe dieses Prozesses wurden insbesondere bei der Protonenpumpe Bacteriorhodopsin (BR) aus Halobakterium Salinarum erforscht 44-47, die erstmals 1971 beschrieben wurde ⁴⁸. Diese und andere Protonenpumpen verfügen über ein DTD (DTE) Motiv in der Nähe der RSB, bei dem das erste Aspartat (D85 in BR) als Gegenion der RSBH+ und primärer Protonenakzeptor agiert (Abb. 4b)⁴⁹. Das zweite Aspartat (D96 in BR) reprotoniert die RSB im Verlauf des Photozyklus. Darüber hinaus erleichtern mehrere Glutamate an der extrazellulären Seite des BRs den Protonenaustritt 45,50,51. Im Vergleich zu BR ist beim Clpumpenden Halorhodopsin der primäre Protonenakzeptor (D85) gegen ein Thr ausgetauscht und Cl⁻ tritt als Gegenion in Erscheinung ⁵²⁻⁵⁵. Die unterschiedlichen Protonenakzeptoren und donoren beeinflussen den Photozyklus, der in Abb. 4d anhand von BR exemplarisch für mikrobielle Rhodopsine dargestellt ist ^{41,42,44–47,56,57}. Im ersten Schritt induziert Belichtung die Isomerisierung des im Dunkeln gebundenen all-trans, 15-anti Retinals zu 13-cis, 15-anti Retinal. Die Energie der Photonenanregung wird durch eine Verdrehung des Chromophors gespeichert, dies führt zu einer Rot-Verschiebung der ersten Photointermediate, J₆₂₀ und K₅₉₀. Letzteres relaxiert zum L-Intermediat mit einem Absorptionsmaximum bei 550 nm. Die Abgabe des Protons der RSBH+ erfolgt an den primären Protonenakzeptor (D85) und führt zu einer Verkleinerung des delokalisierten System des Chromophors, wodurch die blaue Absorption der M-Intermediate (~412 nm) erklärt werden kann. Während des anschließenden Übergangs, M1 nach M2, wird ein Proton an die extrazelluläre Seite abgegeben und es erfolgt eine Auswärtsbewegung des cytoplasmatischen Teils der Helix 6, einhergehend mit einer Öffnung des BRs zur cytoplasmatischen Seite ^{58–63}. Beim Übergang in das N₅₆₀-Intermediat wird die RSB von der cytoplasmatischen Seite durch den Protonendonor D96 reprotoniert. Während des anschließenden N zu O Übergangs re-isomerisiert der Chromophor zu *all-trans* Retinal und die cytoplasmatische Seite verschließt sich. Zum Abschluss des Photozyklus wird der ursprüngliche Dunkelzustand innerhalb von ms wiederhergestellt. Ein etwas abgewandelter Photozyklus findet sich bei anderen Rhodopsin-basierten Pumpen, z.B. Cl⁻ pumpenden Halorhodopsinen, bei denen aufgrund des fehlenden primären Protonenakzeptors (das D85 Äquivalent ist durch T ausgetauscht) die RSBH+ nicht deprotoniert und somit der M-Zustand übersprungen wird ⁶⁴. Trotz dieser Unterschiede gewährleistet eine nicht kontinuierliche Pore den unidirektionale Ionentransport bei Rhodopsin-basierten Pumpen ¹⁷.

1.2.2 Kanalrhodopsine

Des Weiteren gehören Kationen bzw. Anionen leitenden Kanalrhodopsine zu den mikrobiellen Rhodopsinen. Licht induziert bei diesen Photorezeptoren die Öffnung eines kontinuierlichen Kanals und den Einstrom der jeweiligen Ionen gemäß dem elektrochemischen Gradienten. Die ersten zwei Kanalrhodopsine (ChR1 und ChR2) wurden im Augenfleck von Chlamydomonas reinhardtii (Cr) entdeckt, die diesen Grünalgen ein phototaktisches Verhalten ermöglichen 65-68. Über 50 weitere Kanalrhodopsine wurden in anderen Chlorophyten entdeckt ⁴³. Die Öffnung des Kanals führt zu einem veränderten Membranpotential und zu einer Depolarisation der Plasmamembran im Augenfleck. Diese wird an die Flagellen weitergeleitet und ein veränderter Flagellenschlag ermöglicht eine Licht-abhängige Bewegungsänderung der Alge ^{66,67,69,70}. Auf Grundlage der Kristallstruktur eines chimären Kanalrhodopsins, bestehend aus ChR1 und ChR2 ⁷¹, wurde postuliert, dass der kontinuierliche Kanal durch Helix 1,2,3 und 7 gebildet wird (Abb. 5a,b). Es wird davon ausgegangen, dass der Kanal im Dunkeln durch zwei Tore verschlossen ist, die maßgeblich an der Ionenselektivität beteiligt sind (Abb. 5a,b). Während das zentrale Tor ("central gate": E90, S63, N258) nahe der RSB liegt, befindet sich das innere Tor ("inner gate": R268, H265, H134, Y70, E82, E83) auf der cytoplasmatischen Seite der ChRs. Darüber hinaus kleiden fünf Glutamate E82, E83, E90, E97, E101 der Helix 2 die Pore aus ⁷¹. Die Retinal-Schiffbase wird durch die Gegenionen E123 (Helix 3, äquivalent zu D85 bei BR) und D253 (Helix 7, äquivalent zu D212 bei BR) stabilisiert. Im Gegensatz zu BR wird D253 als primärer Protonenakzeptor diskutiert⁷², dies ist jedoch noch nicht schlussendlich geklärt⁷³.

Abb. 5 Aufbau und Photozyklus von Kationen-leitenden Kanalrhodopsinen

(a) Die Struktur des chimären Kanalrhodopsins, bestehend aus ChR1 und ChR2 (PDB: 3UG9), zeigt die Umgebung der Retinal-Schiffbase und den Kanal zwischen Helix 1-3,7 (H = Helix). Das innere Tor (Y70, H134, E82, E83, H265, R286) und das zentrale Tor (S63, E90, N258) verschließen den Kanal im Dunkelzustand. Die positive Ladung der protonierten Retinal-Schiffbase wird durch 2 Gegenionen: E123 (H3) und D253 (H7) stabilisiert. Die Nummerierungen der Aminosäuren beziehen sich auf ChR2. (a, b) Die Schritte, die nach Blaulichtaktivierung zur Kanalöffnung führen sind durch Nummerierungen dargestellt: (1) Nach der Licht-induzierten Isomerisierung des Chromophors, wird (2) die Wasserstoffbrücke zwischen E90 und N258 gelöst. E90 klappt um und (3) die Rotation von Helix 2 führt zur Kanalöffnung. Modifizierte und überarbeitete Abbildungen aus Schneider et al ⁷⁰. (c) Der *anti*-Photozyklus von ChR2: Belichtung isomerisiert *all-trans*, 15-*anti* Retinal zu 13-*cis*,15-*anti* Retinal und führt zur Öffnung des Kanals. Einzelheiten des Photozyklus sind im Text beschrieben. Abbildung (c) beruht auf ^{17,69,70}.

Blaulicht (470 nm) induziert bei ChR2 einen BR-ähnlichen Photozyklus (Abb. 5c) mit Retinal-Isomeren in der anti-Konfiguration^{69-71,74}. Hierbei entspricht P₅₀₀ einem frühen Rotverschobenen BR-Intermediat. Im P₃₉₀-Zustand ist, ähnlich zur M-Spezies in BR, die RSB deprotoniert. Die anschließende Reprotonierung der RSB führt zur Bildung des offenen Zustands ⁷⁰, P₅₂₀, und ermöglicht den Einstrom von Kationen. Hierbei ist die Leitfähigkeit für Protonen gegenüber Na⁺, K⁺ und Mg²⁺ erhöht. Voraussetzung für die Kanalöffnung ist ein verändertes Wasserstoffbrückennetzwerk zwischen N258 und E90 (zentrales Tor) und es wird angenommen, dass ein Umklappen von E90 eine Rotation der Helix 2 induziert (Abb. 5b). Dies geht mit einer Öffnung des inneren Tors einher ^{73,75–78}. Insgesamt laufen diese Prozesse schnell ab und der Kationen-Einstrom erfolgt ~1 ms nach Belichtung (Abb. 5c). Der Photozyklus endet mit der thermischen Reisomerisierung des Retinals (P₄₈₀), dem Schließen des Kanals und der Wiederherstellung des Dunkelzustands. Die Kinetik des Photozyklus kann durch das sogenannte DC Paar (D156/C128 in ChR2) moduliert werden und Mutation dieser Reste führt zu den sogenannten Step-Function-Opsinen (SFO), deren Photozyklus stark verlangsamt ist 69,70,79. Wie genau das DC-Paar Einfluss auf die Kinetik des Photorezeptors nimmt, wird derzeit noch kontrovers diskutiert 79,80

Der Licht-aktivierte Ionenfluss von ChRs kann elektrophysiologisch nachgewiesen werden ^{81–84}. Bei Messungen an ChR2 zeigte sich, dass bei bestimmten Lichtintensitäten ein Peakstrom in einen kleineren stationären Strom übergeht. Dieses Phänomen wurde durch das Bestehen von zwei parallelen Photozyklen (syn und anti) mit zwei offenen Zustände erklärt, die sich durch unterschiedliche Retinal-Isomere und unterschiedliche Leitfähigkeiten auszeichnen. Hierbei liegt der offene Zustand O1 (13-cis, 15-anti Retinal) während des Peakstroms vor, während der weniger leitende O2 Zustand (13-trans, 15-syn Retinal) mit dem stationären Strom korreliert^{81–84}.

Ergänzend zu den Kationen-leitenden Kanalrhodopsinen wurden kürzlich Chlorid-leitende Anionen Kanalrhodopsine in marinen Algen (Cryptophyten) entdeckt, die in ihrer Sequenz von den Kationen-leitenden Kanalrhodopsinen abweichen und über einen veränderten Photozyklus verfügen^{85,86}.

1.2.2.1 Optogenetische Anwendung mikrobieller Rhodopsine

Die Eigenschaft der Pumpen und Kanalrhodopsine, Licht-abhängig Einfluss auf das Membranpotential zu nehmen, revolutionierte die Neurowissenschaften und eröffnete das neue Forschungsfeld der Optogenetik⁸⁷⁻⁹¹. Bei der klassischen Optogenetik werden diese Ionentransportierenden Rhodopsine mithilfe spezifischer Promotoren in bestimmten Neuronen-Populationen exprimiert und Licht induziert eine Depolarisation/Hyperpolarisation der Membran. Diese zeitlich und räumlich präzise Modulation der Neuronen erlaubt es, weitere Erkenntnisse über die neuronalen Verknüpfungen und somit über die Gehirnfunktion zu erzielen ⁹²⁻⁹⁵. Zu den derzeit meist-genutzten optogenetischen Werkzeugen zählen Kationen-leitende Kanalrhodopsine, mit denen die Zelle licht-abhängig depolarisiert werden kann und Aktionspotentiale ausgelöst werden können. Neben den Wildtyp Kanalrhodopsinen (hauptsächlich ChR2) werden verlangsamte, z.B. D/C Paar mutierte Step-Function Opsine, oder kinetisch beschleunigte Kanalrhodopsine für optogenetische Anwendungen eingesetzt ⁶⁹. Weiterhin werden Kanalrhodopsine mit einer vergrößerten Stromamplitude und/oder veränderten Absorptionseigenschaften für die neuronale Modulation angewendet. Aufgrund der tieferen Gewebepenetration von langwelligerem Licht, stehen vor allem Rot-absorbierende Kanalrhodopsine, wie z.B. Chrimson aus Chlamydomonas noctigama im Fokus der Anwender ⁹². Optogenetische Werkzeuge, die eine Hyperpolarisation und somit neuronale Inhibition ermöglichen, umfassen die Protonenpumpe Arch3, das Chlorid-pumpende Halorhodopsin und die natürlichen bzw. die artifiziellen Chlorid-leitenden Kanalrhodopsine^{43,96}.

1.2.3 Sensorische Rhodopsine

Neben den optogenetisch anwendbaren Kanalrhodopsinen und Pumpen zählen die sensorischen Rhodopsine (SR I/II) aus *Halobakterium salinarum* oder das sensorische Rhodopsin aus dem Cyanobakterium *Anabena* ebenfalls zu den mikrobiellen Rhodopsinen^{28–32}. Die sensorischen Rhodopsine I und II regulieren die Phototaxis und liegen im Gegensatz zu Pumpen und Kanälen als 2:2 Komplex mit einem integralen Transducer-Protein vor^{97–99}. Hierbei umgeben zwei Rhodopsin Proteine zwei Transducer Proteine, die jeweils aus zwei Membran-Helices und einer cytoplasmatischen Domäne bestehen. Die Proteininteraktionen werden unter anderem durch Leucin/Isoleucin zwischen Helix 6 und 7 des Rhodopsins und den beiden Helices des Transducers gebildet ¹⁰⁰. Zusätzlich wird dieser Kontakt durch zwei Wasserstoffbrücken zwischen SR II (Threonin, Tyrosin) und dem Transducer stabilisiert. Das Einführen von hydrophilen Aminosäuren in BR und der Austausch von A215 durch Threonin nahe der RSB führte zu einer Interaktion mit dem Transducer Protein und zu einem BR-vermittelten phototaktischen Signal¹⁰¹

Die Sequenzidentität zwischen SRs und BR ist hoch und SRs pumpen Protonen im Transducerfreien Zustand ^{102–104}. Trotz dieser Ähnlichkeiten zeichnen sich SRs durch einen verlängerten M-Zustand im Vergleich zu BR aus; z.B: 750 ms bei SR I ¹⁰⁵. Der verlangsamte Photozyklus kann auf eine Substitution des Protonendonors (D96 bei BR) durch einen aromatischen Rest zurückgeführt werden und gibt genug Zeit für die Aktivierung des Transducer-Proteins. Das Signal wird innerhalb des Transducers über die HAMPⁱ Domäne an die nachgeschaltete Histidin-Kinase CheA weitergeleitet, die den "Response" Regulator CheY phosphoryliert ⁹⁹. Diese Kaskade ähnelt 2-Komponenten-Systemen der bakteriellen Chemotaxis und beeinflusst final den Flagellenschlag, wodurch ein phototaktisches Verhalten ermöglicht wird ¹⁰¹.

1.2.4 Enzym-Rhodopsine

Weiterhin wurden die mikrobiellen Rhodopsine um eine neue Gruppe, die Enzym-Rhodopsine erweitert und Vertreter dieses Photorezeptor-Typs wurden erstmals 2012 charakterisiert ¹⁰⁶. Bei den Enzym-Rhodopsinen ist die photosensorische Domäne direkt an eine oder mehrere enzymatische Effektordomänen gebunden ¹⁰⁷. So ist z.B. bei den Histidin-Kinase Rhodopsine (HKRs) aus Chlamydomonas reinhardtii die Rhodopsin Domäne an eine enzymatische His-Kinase geknüpft (Abb. 6). Letzterer folgt eine Response Regulator-ähnliche Receiver Domäne und im Fall von CrHKR1 eine vermeintliche Nukleotidyl-Zyklase Domäne ^{106,108,109}. Es wird vermutet, dass Belichtung bei HKRs, ähnlich zu Phosphorelay-Systemen (erweiterte 2-Komponenten-Systeme), eine Übertragung des Phosphates auf die Response Regulator Domäne induziert, die infolgedessen die terminale Zyklase Domäne stimuliert. Jedoch konnten bisher weder die Phosphorylierung noch die cAMP Synthese bei HKRs nachgewiesen werden ^{106,108–} ¹¹⁰. Spektroskopische Messungen der rekombinanten Rhodopsin Domänen zeigten die komplexe Photochemie von CrHKR1^{106,110}. Ähnlich zu ChR2 wird von 2 parallelen Photozyklen ausgegangen und unterschiedliche Retinal-Isomere (13-cis/trans, 15-syn/anti) liegen dem UVabsorbierenden Zustand (Rh-UV) bzw. dem Blaulicht-absorbierenden Zustand (Rh-Bl) zugrunde. Im Rh-UV ist wie bei anderen Rhodopsinen die RSB deprotoniert, jedoch ist Rh-UV stabil und kann durch Belichtung in den Rh-Bl Zustand überführt werden. Der unübliche Photozyklus korreliert mit Unterschieden in der Retinal-Bindetasche; so ersetzen Methionin und Leucin bei HKR1 die in BR funktionell wichtigen, negativ geladenen Aminosäuren, D85 (Protonenakzeptor) und D96 (Reprotonierung RSB). Ferner wird angenommen, dass bei HKR1 D239 (äquivalent zu D212 in BR) als Gegenion, primärer Protonenakzeptor und primärer Protonendonor fungiert ¹⁰⁶. Aufgrund der Absorptionseigenschaften wird vermutet, dass HKRs den Algen unter anderem als UV-Sensoren dienen, die sie vor hochenergetischer Strahlung schützen 106.

ⁱ HAMP = Histidine kinases, Adenylate cyclases, Methyl accepting proteins and Phosphatases

Abb. 6 Schematischer Aufbau von Enzym-Rhodopsinen

Histidin-Kinase Rhodopsine (links gezeigt ist HKR1) und Rhodopsin Phosphodiesterasen (rechts) werden zu den Enzym-Rhodopsinen gezählt. Die photosensorische Rhodopsin Domäne ist an eine oder mehrere enzymatische Effektordomänen geknüpft.

Ein weiterer Vertreter der Enzym-Rhodopsine herrscht bei den Choanoflagellaten Salpingoeca rosetta vor ¹¹¹⁻¹¹³. Bei dieser Rhodopsin Phosphodiesterase (RhoPDE, Synonym Rh-PDE) ist eine mikrobielle Rhodopsin Domäne über eine HAMP-ähnliche Domäne (100 Aminosäuren) mit einer cNMP-abbauenden Phosphodiesterase (PDE) verbunden (Abb. 6). HAMP Domänen bestehen aus vier amphiphatischen Helices, die eine Coiled-Coil Struktur bilden, und gemäß ihres Namens bei Histidin-Kinasen, Adenylylzyklasen, Methyl akzeptierenden Proteinen und Phosphatasen vorkommen¹¹⁴. HAMP Domänen vermitteln die Signalweiterleitung zwischen einer Sensor- und einer Effektordomäne^{114,115}. Der konservierten Rhodopsin Domäne gehen bei RhoPDE ~100 N'-terminale Aminosäuren voraus, die eine zusätzliche Membrandurchspannende Helix beinhalten und zu einer intrazellulären Lokalisation des N'-Terminus führen ^{111,113}. Diese Position ist ungewöhnlich, da der N'-Terminus bei Rhodopsinen in der Regel extrazellulär ist. Der C'-Terminus der RhoPDE liegt wie bei anderen Rhodopsinen intrazellulär. Das Absorptionsmaximum der rekombinanten Rhodopsin Domäne konnte bei ~490 nm festgestellt werden. Darüber hinaus zeigten die spektroskopischen Messungen einen Rhodopsin-typischen Photozyklus. Im Gegensatz zu anderen Rhodopsinen ist der Zerfall des M-Intermediats langsam ($\tau = -7$ s)¹¹². Bei Aktivitätsmessungen mit RhoPDE Membranextrakten oder mit rekombinanten Protein wurde eine Substratpräferenz für cGMP nachgewiesen und die cGMP Hydrolyse war gegenüber cAMP 5-100x erhöht ¹¹¹⁻¹¹³. Im Dunkeln bestand eine konstitutive cNMP Hydrolyse Aktivität. Belichtungsexperimente unterschiedlicher Arbeitsgruppen führte zu keiner, bzw. einer 1.4x oder einer 3x Steigerung der cNMP Hydrolyse ^{111–113}. Für die isolierte katalytische Phosphodiesterase Domäne wurde eine konstitutive cGMP Hydrolyse-Aktivität beschrieben, die ca. 6-9x unter der Aktivität des Volllängen-Proteins verblieb ¹¹¹. Die Kristallstruktur der isolierten homodimeren Phosphodiesterase Domäne ¹¹¹ zeigt neben einer weitgehenden strukturellen Übereinstimmung mit humaner PDE9 strukturelle Unterschiede der Helices H5, H7, H12-14 ¹¹¹. Trotz der bestehenden Dunkelaktivität konnte RhoPDE optogenetisch eingesetzt werden und nach mehrfacher Belichtung erfolgte einen Rückgang von cAMP in HEK293 Zellen ¹¹².

Ähnlich zu HKRs und RhoPDE zählt die neu-entdeckte Rhodopsin-Guanylylzyklase aufgrund ihrer Primärsequenz zu den Enzym-Rhodopsinen (eine detaillierte Sequenzanalyse erfolgt im Ergebnisteil). Der RhGC Aufbau unterscheidet sich jedoch von HKRs/RhoPDE und die photosensorische Domäne ist über einen kurzen Linker von ~40 Aminosäuren an eine Guanylylzyklase gebunden ¹. Um die enzymatische Effektordomäne der RhGC einzuordnen, wird der Leser im Folgenden über das Vorkommen, den Aufbau und die Funktion von Zyklasen informiert.

1.3 Typ III Adenylyl und Guanylylzyklasen

Bislang wurden sechs, nicht verwandte Nukleotidyl-Zyklase Klassen identifiziert ^{116,117}. Alle eukaryotischen Adenylylzyklasen (ACs) und alle bisher charakterisierten Guanylylzyklasen (GCs) gehören zu den Typ III Zyklasen, während andere Klassen vor allem bei Bakterien verbreitetet sind ¹¹⁸. Typ III Zyklasen bilden antiparallel angeordnete Dimere und verfügen über ein/zwei katalytische Zentren an der Dimerisierungs-Schnittstelle (Abb. 7). Für die korrekte Ausbildung der jeweiligen Substrat-Bindetasche sind Aminosäuren beider Monomere essentiell. Entsprechend der Sequenzhomologie dieser Reste werden Typ III Zyklasen in 4 Subklassen a - d unterteilt¹¹⁹. ACs und GCs verfügen jeweils über eine hohe Substratspezifität und zyklisieren das jeweilige Nukleotid ATP bzw. GTP zu cAMP bzw. cGMP. Die Substratdiskriminierung geschieht nach der initialen Substratbindung, d.h. im Verlauf der Katalyse¹²⁰. cAMP wurde 1958 entdeckt¹²¹ und ist wie cGMP (s.o.) ein sekundärer Botenstoff, der bei einer Vielzahl zellulärer Prozesse essentiell ist; wie z.B. bei a) der Integration extrazellulärer Signale z.B. Hormone oder Neurotransmitter b) beim Metabolismus z.B. Glycogenabbau, c) bei der Genexpression, d) bei der Kontraktion der Cardiomyocyten, e) bei der circadianen Uhr, oder f) bei der neuronalen Plastizität. Zu den primären Effektoren von cAMP zählen die Proteinkinase A (PKA), CNG Kanäle und das "exchange protein directly activated by cAMP" (EPAC) Protein⁸⁻¹².

PAS = Period clock protein, Aryl hydrocarbon receptor, Single-minded protein

- GAF = entdeckt in: cGMP-bindenden Phosphodiesterasen, Adenylyl Cyclasen (IIIb) und FhIA,
- JMD = Juxtamembranäre Domäne
- KHD = Kinase Homologie Domäne
- CCD = Coiled-Coil Dimerisierungsdomäne

HNOX = Häm NO₂/O₂-bindende Domäne

Abb. 7 Übersicht über Typ III Adenylyl und Guanylylzyklasen

Linke Seite: Eukaryotische ACs liegen als integrale (tmAC, grün) oder cytoplasmatische (s, gelb) Pseudo-Heterodimere vor mit einer aktiven (\Box) und einer degenerierten (**x**) Substratbindestelle. Dahingegen homodimerisieren bakterielle ACs (grau-braun) und bilden zwei aktive Zentren; der katalytischen Einheit sind oftmals sensorische Domänen vorgeschaltet. Rechte Seite: Guanylylzyklasen kommen hauptsächlich bei Eukaryoten als integrale Homodimere (pGCs, blau, p = particulate) oder als cytoplasmatische Heterodimere (sGC, rot/grün) vor. Bei bestimmten pGCs dient die extrazelluläre Domäne, der Bindung von natriuretischen Peptiden, die in Zusammenhang mit der Blutdruckregulation stehen. pGCs verfügen über zwei aktive Zentren, während bei sGCs eines der aktiven Zentren degeneriert ist. Die sGC Aktivität wird vornehmlich durch NO reguliert, das an die sensorische Domäne (HNOX) der β -Untereinheit bindet. Unten: die AC/GC Enzymreaktion; das jeweilige NTP (ATP oder GTP) wird zu cNMP (cAMP/cGMP) zyklisiert unter Abspaltung von Pyrophosphat (PPi). Die Unterschiede der Substrate sind rot hervorgehoben. AC = Adenylylzyklase, GC = Guanylylzyklase

Bei Säugetieren befinden sich neun der zehn Typ III ACs (AC 1-9) in der Zellmembran unterschiedlicher Gewebe ^{122,123}. Die cAMP Synthese dieser sogenannten tmACs wird durch die α -Untereinheit des heterotrimeren G-Proteins, Gs, stimuliert ¹²³. Das Gs-Protein wird seinerseits **G**-Protein gekoppelte Rezeptoren (GPCRs) durch nach Eingang eines Hormon/Neurotransmitter-Stimulus aktiviert. tmACs bestehen aus 2 membranständigen hexahelikalen Domänen (1. und 3. Domäne), die sich mit zwei katalytischen Domänen C1 und C2 (2. und 4. Domäne) abwechseln (Abb. 7). C1 und C2 unterscheiden sich in ihrer Sequenz und bilden ein Pseudo-Heterodimer, bei dem nur eine Substratbindestelle katalytisch aktiv ist, während das Enzym über die 2. degenerierte Bindestelle z.B. durch Forskolin reguliert werden kann 124 (Abb. 7).

Im Gegensatz zu AC 1-9 liegt AC10 (sACⁱⁱ) bei Säugetieren cytoplasmatisch vor und die katalytischen Domänen C1 und C2 werden nicht von integralen Domänen eingefasst (Abb. 7) ¹²⁵. sAC wird durch Bikarbonat und Ca²⁺ reguliert ^{126–129} und übernimmt eine wichtige Rolle bei der pH-Regulation, der Spermien-Motilität, der Apoptose und beim Metabolismus (z.B. Glykolyse, oder Atmung) ¹³⁰. C1 und C2 unterscheiden sich ebenfalls in ihrer Sequenz und sind über einen Linker (68 Aminosäuren) verbunden ¹²⁵. Eine Dimerisierung der beiden Domänen führt wie bei tmAC zur Ausbildung eines Pseudo-Heterodimers mit einer aktiven und einer degenerierten Substratbindestelle (Abb. 7). Dahingegen bilden ACs bei einfacheren Organismen z.B. Bakterien tatsächliche Homodimere und verfügen über zwei symmetrische aktive Zentren ^{127,131,132} (Abb. 7). Der katalytischen Domäne sind meist Regulations-/Sensordomänen z.B. PASⁱⁱⁱ oder GAF^{iv} Domänen voran geschaltet, die die Wahrnehmung zellulärer Signale ermöglichen ¹¹⁹.

Guanylylzyklasen sind bei Prokaryoten - mit Ausnahme von Cyanobakterien - selten ^{133,134} und kommen bei Protozoen und Metazoen in einer löslichen (sGC) oder membranständigen Form (pGC^v) vor ^{135,136}. Membranständige pGCs (z.B. pGC A-C) umfassen eine extrazelluläre Liganden-Bindedomäne, die über eine einfache integrale Helix in eine juxtamembranäre Domäne und eine Kinase Homologie Domäne übergeht, an die sich eine Coiled-Coil Dimerisierungs-Domäne (S-Helix^{vi}) und eine Zyklase Domäne anschließt (Abb. 7) ^{2,135,137,138}. Bei den pGCs A-B binden natriuretische Peptide an die extrazelluläre Domäne und stimulieren die Synthese von cGMP, das den Blutdruck reguliert. GC-E (Ret-GC1) und GC-F (Ret-GC2) synthetisieren cGMP in der Retina, das für den Sehprozess essentiell ist ¹³⁹. Bei allen integralen GCs ist die Homodimerisierung für den katalytischen Umsatz von GTP essentiell ^{140,141}.

ⁱⁱ sAC = soluble Adenylylzyklase

ⁱⁱⁱ PAS = Period clock protein, Aryl hydrocarbon receptor, Single-minded protein

 $^{^{}iv}$ GAF = first discovered in cGMP-binding phosphodiesterases, Adenylyl cyclases (class IIIb) and *E. coli* transcription factor FhIA

^v pGC = particulate Guanylylzyklase

^{vi}S-Helix = signaling helix

Der Hauptvertreter der cytoplasmatischen GCs ist die NO-sensitive GC (sGC), die im Gegensatz zu den membranständigen GCs ein α , β Heterodimer bildet (Abb. 7) ^{2,3,142,143} und eine wichtige Rolle bei der Blutdruckregulation, der Wundheilung, bei sexuellen Funktionen, im Gehirn und bei Infektionskrankheiten spielt ¹⁴⁴. Die Struktur der sGC wurde 2014 mithilfe der Cryo-Elektronenmikroskopie gelöst ¹⁴⁵ und zeigt den multimodularen Aufbau des Enzyms: Beide Untereinheiten umfassen eine N^c-terminale Häm NO/O₂-bindende Domäne (HNOX) eine PAS Domäne, eine Coiled-Coil Helix (S-Helix), an die sich eine katalytische Domäne anschließt (Abb. 7). Die S-Helix vermittelt wie bei pGCs die Signalweiterleitung zwischen der Sensor- und der Effektordomäne ^{146,147}. Neben einem Heptadenmuster ¹⁴⁸, zeichnen sich S-Helices durch ein ERT Motiv aus, das eine interhelikale elektrostatische Interaktion bildet, die für die Signalweiterleitung essentiell ist ^{146,149–151}.

1.3.1 Das Zyklase Transducer Element

Am Ende der GC S-Helix wurde kürzlich ein signalübertragendes Element, das Zyklase Transducer Element (CTE), entdeckt ^{152,153}. Im Unterschied zu Helix-Turn-Helix Motiven umfasst das kurze Sequenzmotiv (19 AS) ein zentrales Prolin (Abb. 8a, Ausnahme Vertebraten, Typ IIIb AC), das von hydrophoben Aminosäuren umgeben ist. Aufgrund des Prolins bildet das CTE eine abgeknickte Helix-Struktur (Abb. 8b).

Abb. 8 Das Zyklase Transducer Element (CTE)

(a) Das Sequenzmotiv liegt bei GCs und Typ IIIa/b ACs vor und beinhaltet ein zentrales Prolin, das von hydrophoben Aminosäuren umgeben ist. (b) Links: Gezeigt ist die abgeknickte Helix-Struktur des CTEs (cyan) im Anschluss an die S-Helix (grau) der Guanylylzyklase aus Ratten (PDB: 3HLS). Rechts; das CTE Element (gelb und blau) geht der katalytischen Domäne der humanen sAC (grau) voraus (PDB: 4CLF). Modifizierte Abbildung aus Ziegler et al.¹⁵².

Neben GCs wurde das CTE Motiv bei Typ IIIa und IIIb ACs nach der hexahelikalen transmembran-Domäne, unmittelbar vor der katalytischen Domäne identifiziert (Abb. 8a). Aufgrund der abgeknickten Helix-Struktur befindet sich das CTE häufig im Anschluss an S-Helices oder 4-fach helikalen HAMP Domänen und ist involviert in der intramolekularen Signalübertragung zwischen der Sensor- und der Effektordomäne¹⁵².

1.3.2 Der Katalyse-Mechanismus und die Struktur von Typ III Zyklasen

Die Strukturen aller Typ III Zyklasen zeigen trotz der Dimerisierungs-Unterschiede (Homobzw. Pseudo-Heterodimerisierung) große Ähnlichkeiten ^{124,130,134,154–157}. Typ III Nukleotidyl-Zyklasen gehören zu den $\alpha+\beta$ Proteinen und weisen eine Ferrodoxin ähnliche Faltung vor. Beide katalytische Einheiten bestehen jeweils aus einem 7-strängigen β -Faltblatt, das von 3 Helices $\alpha 2$, $\alpha 3$ und $\alpha 5$ nach außen abgeschirmt wird. Die Dimerisierung findet an den Flächen der β -Faltblätter statt und wird durch die $\beta 4$ - $\beta 5$ Schleifen, die über die andere Dimer-Einheit ragen, stabilisiert (Abb. 9a).

Die aktiven Zentren werden an der Dimerisierungs-Schnittstelle durch Aminosäuren beider katalytischer Einheiten gebildet (Abb. 9a,b). Hierbei sind sieben konservierte Reste für die NTP Positionierung, die Substratdiskriminierung und für die Katalyse wichtig ^{130,154,158,159}, bei der durch eine intramolekulare nukleophile Substitution (SN₂) die Reaktionsprodukte cNMP und PPi entstehen ¹⁶⁰ (Abb. 9c, Sequenz- Vergleich: Anhang Abb. 49). Bei allen Typ III Subklassen koordinieren zwei konservierte Aspartate (D440, D396 in Abb. 9b) die NTP-Phosphatgruppen indirekt über 2 Metallionen (Mn²⁺/Ca²⁺/Mg²⁺). In Analogie zu DNA und RNA Polymerasen ¹⁶¹ und entsprechend ihrer Lokalisation und Funktion unterscheidet man zwischen Metallion A und Metallion B ¹⁶². Ion B bindet das Nukleotid an den β - und γ -Phosphatgruppen (P β , P γ) und wird in der Regel in Liganden-gebundenen Zyklase Strukturen vorgefunden. Dahingegen wird für Ion A eine transiente Bindung zwischen Ribose 3'OH und Pa angenommen, die als essentiell für die Substratpositionierung und die Katalyse angesehen wird ^{124,125}. Hierbei wird vermutet, dass Ion A das Proton am Ribose 3'-OH abstrahiert und so 3'-O für den nukleophilen Angriff aktiviert ^{116,127,162}. Ferner wird davon ausgegangen, dass nach 3'-O Angriff ein pentavalenter α -Phosphor im Übergangszustand entsteht und dass die resultierende negative Ladung des α -Phosphats durch Ion A und ein konserviertes Arginin (R1029 (α 4) in Abb. 9b) stabilisiert wird ^{130,162}. Eine lineare Anordnung zwischen dem angreifenden Ribose-3'Sauerstoffs, des α -Phosphors und der zu spaltenden Pa-O Bindung wird als Voraussetzung für die Katalyse gesehen (Abb. 9c)^{130,162}. Neben den beiden Metallionen binden polare Aminosäuren zwischen β 1 und α 1 das Substrat durch Wasserstoffbrücken zu P β und P γ .

Des Weiteren bildet ein Arginin (R484 in Abb. 9b) zu Beginn des β 4 Strangs eine Salzbrücke zu P γ und stabilisiert so die PPi Abgangsgruppe (Ausnahme humanes sAC). Darüber hinaus bildet der katalytisch wichtige Rest N1025 (α 4) eine Wasserstoffbrücke zur Ribose (Abb. 9b).

Abb. 9 Struktur und Mechanismus von Typ III Zyklasen am Beispiel von tmAC

(a) Die beiden tmAC Untereinheiten (blau-grün, gelb-rot, PDB: 1CJK) bilden ein antiparallel angeordnetes Pseudo-Heterodimer mit zwei aktiven Zentren am Dimer Interface. Das obere Zentrum ist degeneriert und durch Forskolin besetzt. Das aktivierende Gs-Protein (dunkelgrün) bindet in der Nähe der Forskolin-Bindestelle. (b) Das katalytisch aktive Zentrum (unten in a) bindet das ATP Analogon ATP- α S. Die Bindung der Adeninbase und der Substrat-Phosphatgruppen erfolgt durch Aminosäuren unterschiedlicher Untereinheiten; der Stern (*) markiert das Partnermonomer. Mg²⁺ und Mn²⁺ befinden sich an der Ion A bzw. Ion B Position. (c) Die intramolekulare Substitutionsreaktion überführt ATP in cAMP und PPi. Im Übergangzustand ist der α -Phosphor 5-fach gebunden und ein negativ geladenes α -Phosphat resultiert. Eine lineare Anordnung zwischen der 3'-O-Ribose, P- α und der Abgangsgruppe ist Katalyse-voraussetzend. Weitere Einzelheiten bezüglich der Substratbindung und der Katalyse sind im Text dargestellt. tmAC = transmembranständige Adenylylzyklase

Während die Phosphatgruppen des Substrats hauptsächlich von polaren Resten umgeben sind, ist die Nukleotid Base (Adenin oder Guanin) in eine hydrophoben Tasche eingebettet (z.B: Trp, Phe, Val, Ile). Zusätzlich erfolgt die Basenbindung durch 2 polare Aminosäuren, die maßgebend für die Basenselektivität sind ^{130,163}. Bei Adenylylzyklasen des Typs IIIa werden diese Positionen durch ein Lys/Asp bzw. bei Typ IIIb durch ein Lys/Thr Paar besetzt, die ein selektives Donor/Akzeptor Wasserstoffbrückennetzwerk zum N1-Pyrimidin/6-Aminogruppe des Adenins aufspannen. 1-2 weitere Wasserstoffbrücken (direkt/H₂0-vermittelt) existieren zwischen der 6-Aminogruppe und dem Proteinrückgrat (u.a. β 5) ^{119,130,162}.

In Guanylylzyklasen sind diese Positionen durch ein Glu/Cys Paar belegt. Obgleich keine GC Struktur mit gebundenem Ligand existiert, wird in Analogie zu ACs eine Bindung des N1-Pyrmidins und der N2-Aminogruppe zum Wasserstoffbrücken-Akzeptor Glu angenommen. Darüber hinaus wird eine Wasserstoffbrücke zwischen der C4-Ketogruppe und Cys vermutet ^{156,164}. Gleichermaßen wird bei GCs ein AC-ähnlicher Reaktionsmechanismus für die Bildung von cGMP angenommen ^{155,163}.

Für die korrekte Substratausrichtung und den Katalyse-Verlauf wird weiterhin eine Annäherung zwischen der α1 Helix und der $\beta7/\beta8$ Schleife als wichtig erachtet, die die Zyklase von einem offenen in einen geschlossenen Zustand überführt ^{124,127}. Bei CyaC (AC *S. platensis*) führt diese Bewegung zu einer Positionierung des Übergangszustands-stabilisierenden Arginins nahe Pα ¹²⁷. Bislang konnte die Ursache und Auswirkung der α1 - $\beta7/\beta8$ Bewegung nicht endgültig geklärt werden. Es bleibt offen, ob der Übergang in den geschlossenen Zustand als Folge der Substratbindung und somit vor der Katalyse stattfindet (tmAC) ¹⁶² oder ob die α1 - $\beta7/\beta8$ Annährung während der Katalyse stattfindet und somit die geschlossenen Strukturen den Protein-Produkt-Komplex darstellen (CyaC) ¹³⁰. Ungeachtet des genauen Reaktionsablaufs herrscht eine konstitutive Aktivität der katalytischen Domäne bei Typ III ACs und GCs vor, die durch die vorausgehenden regulatorischen und integralen Domänen unterdrückt wird ^{124,127,134,155,165}.

Die enzymatische Domäne der RhGCs ist homolog zu Typ III Guanylylzyklasen, jedoch wurde bis zum Beginn dieser Arbeit eine enzymatische Funktion der RhGCs nicht direkt nachgewiesen ¹. Somit war unklar, ob RhGCs durch Licht aktiviert werden und als Licht-abhängige Typ III Zyklasen agieren. Neben den RhGCs gibt es ähnlich aufgebaute Photorezeptoren, die sogenannten Photoaktivierten Zyklasen (PACs), bei denen eine Typ III Adenylylzyklase an eine photosensorische BLUF^{vii} Domäne geknüpft ist. Die BLUF Domäne nutzt FAD^{viii} als Chromophor ¹⁶⁶. Eine Licht-induzierte cAMP Synthese konnte bei PACs nachgewiesen werden ^{167–171} und auf die Einzelheiten dieser photoaktivierten Enzyme wird im Folgenden eingegangen.

^{vii} BLUF = sensors of blue-light using FAD

^{viii} FAD = flavin adenine dinucleotide

1.4 Photoaktivierte Zyklasen

Die Photoaktivierten Zyklasen (PACs) herrschen bei Algen und Bakterien vor ^{119,167}. Die Funktionsweise dieser cytoplasmatischen Photorezeptoren wurde experimentell bestätigt und Blaubelichtung induziert die cAMP Synthese ^{167–171}. Zu den ersten charakterisierten PACs zählen PACα (105 kDa kDA) und PACβ (90 kDa) aus Euglena gracilis (Eu), die in diesen Algen die Phototaxis steuern und aus jeweils zwei photosensorischen BLUF Domänen und zwei katalytischen Domänen bestehen. Die α/β Untereinheiten können zusammen oder einzeln aktiv sein und der cAMP Anstieg nach Blaulicht-Aktivierung ist bei euPACa ~100x höher als bei euPACß ^{167,172,173}. Komplementär zu Ionen-leitenden Rhodopsinen, die eine Licht-abhängige Modulation des Membranpotentials erlauben (Absatz 0), wurde euPACa als optogenetisches Werkzeug eingesetzt, um cAMP-abhängige Signalwege mit Licht zu kontrollieren. Diese zeitlich und örtlich präzise Regulation von cAMP wurde beispielsweise bei Drosophila Melanogaster oder Caenorhabditis elegans genutzt, um cAMP-vermittelte Effekte/Verhaltensveränderung mithilfe von Licht zu induzieren ^{173,174}.

Trotz des anfänglich erfolgreichen Einsatzes von euPAC α zur optischen Regulation von cAMP, waren dessen Größe (>100 kDa), die eingeschränkte Löslichkeit, die Dunkelaktivität und die nur moderate Aktivierbarkeit hinderlich für weitere optogenetische Anwendungen ¹⁶⁹. Dies motivierte die Suche nach verkürzten PAC Varianten und führte zur Entdeckung einer PAC beim Bodenbakterium Beggiatoa (bPAC, Synonym BlaC), die 350 Aminosäuren umfasst^{169,170}. Anders als bei euPACs ist bei bPAC eine einzelne photosensorische BLUF Domäne über ein Coiled-Coil Segment und ein CTE Motiv an eine einzelne Adenylylzyklase Domäne (Typ IIIb, Lys/Thr) gebunden ¹⁷⁵. Die bPAC Kristallstruktur ohne gebundenen Liganden zeigt eine Zyklasen-typische antiparallele Homodimerisierung der katalytischen Domänen ¹⁷⁵. Blaulicht aktiviert die cAMP Produktion von bPAC und die maximale Enzymgeschwindigkeit beträgt 10 nmol cAMP min⁻¹ mg⁻¹ während die Enzymaktivität im Dunkeln 300x reduziert ist ¹⁶⁹. Eine Lichtintensität von $\sim 4 \text{ }\mu\text{W} \text{ }mm^{-2}$ reicht aus, um bPAC halb-maximal zu stimulieren. Im Gegensatz zu anderen Typ III Zyklasen ist die isolierte katalytische Domäne von bPAC inaktiv ¹⁷⁵. Der Photozyklus ist im Vergleich zu mikrobiellen Rhodopsinen mit ~ 12 s langsam ¹⁶⁹. Insbesondere die verbesserte Expression führte dazu, dass bPAC das derzeit meistgenutzte Werkzeug für eine optogenetische cAMP Kontrolle ist. Somit konnten beispielsweise cAMPabhängige Signalwege im Zebrafisch, in protozoischen Parasiten, in Mausspermien und in Neuronen mithilfe von bPAC untersucht werden ^{176–180}.

Neben der Anwendung von bPAC als optogenetisches Werkzeug zur Steuerung von cAMP konnte durch das Einbringen der 3 Mutationen K197E/D265K/T267G die bPAC Substratspezifität von ATP auf GTP geändert werden ¹⁷⁰. Blaulicht induziert bei dieser

photoaktivierten Guanylylzyklase, BlgC, die Synthese von cGMP, jedoch verbleibt eine 10 % AC Restaktivität. Dies zusammen mit einer erhöhten Dunkelaktivität und einem kleinen dynamischen Fenster (ca. 6x Licht/Dunkel) limitiert die optogenetische Anwendung von BlgC.

Im Genom des Cyanobakteriums *Oscillatoria acuminata* existiert eine weitere verkürzte PAC, OaPAC, mit einer Länge von 366 Aminosäuren ^{168,181}. Die Sequenzidentität zu bPAC beträgt 57 % und bei OaPAC ist ebenfalls eine photosensorischen BLUF Domäne an eine Coiled-Coil Helix geknüpft, an die sich ein CTE Element und eine C⁻-terminale Typ IIIb Zyklase Domäne anschließt. Im Vergleich zu bPAC wurde in HEK-Zell basierten Luminiszenz-Messungen eine verringerte Lichtsensitivität und eine ca. 100x verringerte cAMP Aktivität von OaPAC festgestellt. Nichtdestotrotz konnte OaPAC als optogenetisches Werkzeug eingesetzt werden und induzierte das axonale Wachstum hippokampaler Rattenneuronen ¹⁶⁸.

Weitere PACs wurden in der Amöbe *Naegleria gruberi*, in protozoischen Parasiten z.B. *Theileria parva* und in Bakterien, z.B. *Pseudanabaena biceps* entdeckt, die sich zum Teil auch für optogenetische Anwendungen eignen ^{171,182}. Eine weitere LOV-basierte PAC aus dem Cyanobakterium *Microcoleus chthonoplastes* wurde 2013 beschrieben ¹⁸³, die jedoch im Dunkeln konstitutiv aktiv ist.

Trotz des optogenetischen Potentials von bPAC/OaPAC kann das blaue Absorptionsmaximum dieser Photorezeptoren aufgrund der geringen Gewebe-Penetration von blauem Licht insbesondere bei *in vivo* Anwendungen von Nachteil sein. Dies war Motivation für das Design einer Rot-absorbierenden AC Chimäre, IIaC, bei der eine Tetrapyrrol (Chromophor) bindende Phytochrom Domäne (*Rhodobacter sphaeroides*) an eine katalytische AC Domäne (*Nostoc sp)* fusioniert wurde ¹⁸⁴. Trotz einer 6-fachen Photodynamik und der Einsatzbarkeit von IIaC in cholinergen *C.elegans* Neuronen zeigte sich, dass die Handhabung von IIaC erschwert ist und das *C.elegans* Wachstum im Dunkeln erfolgen musste (Ryu et al., 2014).

Alternativ zu PACs können Quallen Opsine und OptoXR Systeme eingesetzt werden, um den intrazellulären cAMP Spiegel durch die Aktivierung multipler endogener Proteine zu erhöhen.^{185,186}. Bei der OptoXR Chimäre wurden die Schleifen des Gs-bindenden β2 adrenergen Rezeptors an das bovine Rhodopsin II geknüpft ¹⁸⁵, während Gs der natürliche Bindepartner bei Quallen Opsinen ist ¹⁸⁶. In beiden Fällen führt die Belichtung der Photorezeptoren zur Aktivierung des endogenen Gs-Proteins, das seinerseits die cAMP Synthese der endogenen tmAC stimuliert ^{185,186}.
1.5 Zielstellung

Rhodopsin-Guanylylzyklasen (RhGCs) sind Photorezeptoren, die kürzlich im Genom von fünf aquatischen Pilzen der Abteilung *Blastocladiomycota* entdeckt wurden ¹. Im Vergleich zu anderen Rhodopsinen ist die Sequenz der RhGCs einzigartig und umfasst eine mikrobielle Rhodopsin Domäne, die über einen Linker an eine Typ III Guanylylzyklase Domäne geknüpft ist. Guanylylzyklasen synthetisieren den essentiellen Sekundärbotenstoff cGMP. Aufgrund ihrer Architektur werden RhGCs zu den mikrobiellen Enzym-Rhodopsinen gezählt.

Der direkte Nachweis einer RhGC Funktion existierte zu Beginn dieser Arbeit nicht und eine biochemische und biophysikalische Charakterisierung der fünf neu-entdeckten RhGCs war das Hauptziel der vorliegenden Arbeit. Für eine primäre Funktionsanalyse, erfolgte eine elektrophysiologische Vermessung der RhGCs. Dazu wurde die jeweilige RhGC zusammen mit einem cGMP-abhängigen Reporterkanal in Xenopus Oocyten exprimiert und die cGMPvermittelten Ströme verglichen. Zudem wurde die Konzentration cyclischer Nukleotide in RhGC-exprimierenden Oocyten vor und nach Belichtung quantifiziert, um eine Licht-aktivierte Guanylylzyklase Aktivität direkt nachzuweisen. Für eine fortführende Analyse der enzymatischen Eigenschaften wurden die aufgereinigten Volllängen-RhGCs sowie die isolierten Guanylylzyklase Domänen einer enzymkinetischen Analyse unterzogen. Ferner wurde die aufgereinigte Rhodopsin Domäne spektroskopisch charakterisiert, um Einblicke in die Absorptionseigenschaften und in den Photozyklus der Photorezeptoren zu erhalten. Im Anschluss an die *in-vitro* Charakterisierungen wurde überprüft, ob RhGCs als optogenetische Werkzeuge für eine Licht-abhängige cGMP Stimulation eingesetzt werden können. Hierzu wurde das optogenetische Potential der Photorezeptoren in verschiedenen Säugetierzellen getestet. Im Hinblick auf fortführende Anwendungen wurden Mutationen in die Rhodopsin Domäne eingeführt, um die Absorptionseigenschaft und Kinetik der RhGCs zu verändern. Da cAMP neben cGMP ein essentieller Zellbotenstoff ist, wurden Mutationen in die Zyklase Domäne der RhGCs eingeführt, um Rhodopsin-Adenylylzyklasen zu generieren. Die optogenetische Anwendbarkeit dieser Varianten wurde im Anschluss in hippokampalen Neuronen untersucht. Abschließend wurden die isolierten Zyklasen (Wildtyp und mutierte Variante) kristallisiert, um einen Einblick in die Nukleotid-Bindetasche zu erhalten und um erste Hinweise bezüglich der intramolekularen Signalweiterleitung bei RhGCs zu generieren.

2 Ergebnisse

2.1 Sequenzanalyse der RhGCs

RhGCs gehören zu den Enzym-Rhodopsinen und ihre Primärsequenz (Abb. 10) umfasst eine mikrobielle Rhodopsin Domäne, die über einen Linker (40 Aminosäuren) an eine Typ III Guanylylzyklase gebunden ist ¹. Im Unterschied zu anderen mikrobiellen Rhodopsinen besitzen die fünf RhGCs aus *Blastocladiomycota* einen verlängerten N'-Terminus (140 bis 180 Aminosäuren), der sich insbesondere bei RhGC aus *Blastocladiella emersonii* (Be) durch Serin/Glycin Wiederholungen auszeichnet. Sekundärstrukturanalysen erlauben zwei zusätzliche Helices (Helix -1und 0, Ausnahme Am13844) innerhalb dieses Bereiches vorherzusagen (Abb. 10). Bei den RhGCs aus *Blastocladiella emersonii* (Be) und *Catenaria anguillulae* (Ca) wurde eine Rhodopsin-untypische intrazelluläre Position des N'-Terminus nachgewiesen, somit beinhaltet der N^e-Terminus eine transmembran-Helix (vermutlich Helix 0) ^{26,27,187}. Interessanterweise kann eine Coiled-Coil Wahrscheinlichkeit für Helix -1 bei CaRhGC, Am09565 und Am07932 festgestellt werden, während die Ausbildung einer solchen Struktur für Helix-1 bei BeRhGC und Am13844 wenig wahrscheinlich ist (Anhang Tabelle 13, Tabelle 14).

Ein Vergleich der fünf RhGCs untereinander zeigt eine hohe Sequenzübereinstimmung (>60 %), insbesondere innerhalb der Zyklase Domäne (>85 %, Abb. 10). Unterschiede konzentrieren sich auf den Rhodopsin Teil und den untypischen N'-Terminus. Die Rhodopsin Domäne der RhGCs ist ähnlich zu anderen mikrobiellen Rhodopsinen und besteht aus sieben transmembran-Helices, die dem untypischen N'-Terminus folgen. Ein Sequenz- Vergleich unterschiedlicher Rhodopsine ist im Anhang Abb. 48 dargestellt und konservierte Reste wurden in die folgende Abb. 10 übertragen. Eine hohe Sequenzidentität zwischen RhGCs und anderen Rhodopsinen besteht in Helix 3, sowie in Helix 4,6 und 7. Diese Helices, insbesondere Helix 3, beherbergen konservierte und funktionell wichtige Reste. Vergleichbar zu anderen mikrobiellen Rhodopsinen kann bei RhGCs davon ausgegangen werden, dass Lysin (K384 Be/CaRhGC) in Helix 7 den Retinal Chromophor kovalent bindet. Als potentielle Gegenionen der RSB treten bei RhGCs vergleichbar zu Kanalrhodopsinen D380 (Helix 7, Be/CaRhGC) und E254 (Helix 3, Be/CaRhGC) in Erscheinung. Gleichermaßen kleiden hydrophobe, hauptsächlich aromatische Aminosäuren die Bindetasche des Retinals aus. Mit Ausnahme von Am13844 liegt das Kinetikbestimmende D/C Paar bei den neu-entdeckten Photorezeptoren in Helix 4 und 3 vor, das bei Am13844 durch Glycin und Asparagin ersetzt ist. Das Aspartat, das bei Bacteriorhodopsin die deprotonierte Retinal-Schiffbase (M-Intermediat) reprotoniert, ist bei RhGCs durch ein Leucin (L265 Be/CaRhGC) ersetzt.

BeRhGC 1-626 CaRhGC 1-626 AmRhGC(07932) 1-748 AmRhGC(09565) 1-585 AmRhGC(13844) 1-659	1 MKDKDNNL RGACSSC - NCPEYCFSPTST - L CDDCKCSVTKHP I VEQPLSRNGSFRSSGASLLPSPSSPNVK I TSTVGLRSRKSES 1 MKDKDNNLRGACSGC - SCPEYCYSPTST - L CDDCKCSVTKHP I VEQPLTRNGSFRSSGASLLPSPSQPN I KVTGSSTASSNANMR 1 MKDKDNNLRGACTAC - TCPEYCFSPSST - L CDDCKCP I TKHPVVE - PLSRNGSFRSSGASLLPSPSAVNVL KVGGSGSGSVLRN 1 MKDKDNNLRGACTAC - TCPEYCFSPSST - L CDDCKCP I TKHPVVE - PLSRNGSFRSSGASLLPSPSAVNVL KVGGSGSGSVLRN 1 MKDKDNNLRGACTAC - TCPEYCFSPSST - L CDDCKCP I TKHPVVE - PLSRNGSFRSSGASLLPSPSAVNVL KVGGSGSGSVLRN 1 MKDKDNNLRGACTAC - TCPEYCFSPSST - L CDDCKCP I TKHPVVE - PLSRNGSFRSSGASLLPSPSAVNVL KVGGSGSGSVLRN 1 MKDKDNNLRGACTAC - TCPEYCFSPSST - L CDDCKCP I TKHPVVE - PLSRNGSFRSSGASLLPSPSAVNVL KVGGSGSGSVLRN 1 MKDKDNNLRGACTAC - TCPEYCFSPSST - L CDDCKCP I TKHPVYE - PLSRNGSFRSSGASL PSPSAVNVL KVGGSGSGSVLRN 1 MKDKDNNLRGACTAC - TCPEYCFSPSST - L CDDCKCP I TKHPVE - PLSRNGSFRSSGASL PSSSGASLVVV KVGGSGSGSVLRN 2 MKDKDNNLRGACTGC - TCPEYCFSPSST - L CDDCKCP I TKHPVE - PLSRNGSFRSSGASL PSSSGASL PSSAVNVL KVGGSGSGSVLRN 2 MKDKDNNLRGACTGC - TCPEYCFSPSST - L CDDCKCP - TKHPVE - PLSRNGSFRSSGASL PSSSGASL PSSAVNVL KVGGSGSGSVLRN 2 MKDKDNNLRGACTGC - TCPEYCFSPSST - L CDDCKCAVTKHSIVDAS	83 83 82 43 65
BeRhGC 1-626 CaRhGC 1-626 AmRhGC(07932) 1-748 AmRhGC(09565) 1-585 AmRhGC(13844) 1-659	84 QANVRGSM I SNSNSGSRSNN - SGGAGGGSGGSSSSKGGSALANYQSAMSELW <mark>SWNMML STPSLKFLTVQF</mark> TTW I VLTTVGA I YTL 84 NRQNNSLSVSNVRSTSSASS - SNVSSPANSRPGSPSKQSALQQYQTN I ADMWSWDMML STPSLKFLTGQF I MWA I LTVAGAFYAL 83 RKDGPVKSSSSMLGGSRSS - SPNKARASS PNGGDNDTKMTMDEFRANLQEMASWE MMMSTPSLKFLTVQFAVWLTVTVLLALYTV 44 RKDGSKSSS - SMLGGSRPGGSPSKARASS P - NGGNDTKMTMDEFRANLQEMASWE MMMSTPSLKFLTVQFVVWLTVTVCLALYTV 66 VSPVKSSTDQPEFDGFDGNF - TLLT I RASGSPTAHTSLAAFQAGHASFDAAWSWSMLWTV PALKCLAVHGLLWI AATAALSWYTV 14 Helix 1 Helix 0	167 167 166 126 149
	Phodonsin	
BeRhGC 1-626 CaRhGC 1-626 AmRhGC(07932) 1-748 AmRhGC(09565) 1-585 AmRhGC(13844) 1-659	168 FFHERQAYNRGWAD I WYGYGAFGFGLG LSFAYMGFTGARNPEKKALSLCL LGVN FISFMSYI I IMLRLTPTI EGTMANPVEPARY 168 FFHERQAYNRGWAD I WYGYGAFGFGI GIAFSYMGFAGARNPEKKALSLCL LGVN I IAFSSYI LIMLRLTPTI EGTLSNPVEPARY 167 VAHERPKFNRGWAD I WYGYGAFGFGVGVAYAYMGFTSAKSPEKRALSLCL FGVNL ISFSSYULI LLRLTPSLVGTFGNPVEPARY 127 VAHERPKFNRGWAD I WYGYGAFGFGVGVAYAYMGFTSAKSPEKRALSLCL FGVNL ISFSSYULI LLRLTPSLVGTFGNPVEPARY 150 TAHDRQAYNRGWAD VWYGYGAFGFLAI GVAFSGMGFFGAKSTEKKAMALALFGVNVMALATYVLVLLRLSPTI EGSQSNAVEPARY 161 Helix 1	252 252 251 211 234
BeRhGC 1-626 CaRhGC 1-626 AmRhGC(07932) 1-748 AmRhGC(09565) 1-585 AmRhGC(13844) 1-659	GIR D/C R 253 LEWIAT CPVLILLISE ITQYPHDPYKVIVNDYALCLAGFVGA I SAQQPWGDLAHFVSCLCFSYVVSLWSCFTGA I DGETQCNVE 253 LEWIAT CPVLILLISE ITQADHNAWGVVFSYALVVCGFFGAVLPYPYWGNLFNILSCAFFSFVVSLWSCFTGA I DGETQCNVE 252 LEWIGTCPVLILLISE ITRFPHDPFKVVFHDYFLNVMGFFGA I MPPQPWGDLANILSCLGFSYVVSLWSCFTGA I DGETDTSVA 212 LEWMGTCPVLILLISE ITRFPHDPFKVVFHDYFLNVMGFFGA I MPPQPWGDLANILSCLGFSYVVSLWSCFTGA I DGDTDTSVA 214 LEWMGTCPVLILLISE ITRFPHDPFKVVFHDYFLN I MGFFGA I MPPQPWGDLANILSCLGFSYVVSLWSCFTGA I DGDTDTSVA 215 LERLATSPVLIQVIAA TQSPHRPTAVITVNYLVTIAAFMGAVLPPFPLGNLCSVLSCAGIGYVVTH VMCFTCA I DGTTVSVA 216 Helix 3 Helix 4	337 337 336 296 319
BeRhGC 1-626 CaRhGC 1-626 AmRhGC(07932) 1-748 AmRhGC(09565) 1-585 AmRhGC(13844) 1-659	R R GI RSB Linker: Coiled-coil 338 KSGL RWI RFSTI IT TWSLFP IT WFSYTSGL I SFT VAEAGFSMI DIGAKVFLT LVLVNSTVEQAQNOKVDAITA I AEELENOINNCD 338 VNGL RWT RFST VT TWTLFP LSWFAFT SGML SFT MTEASFT MI DIGAKVFLT LVLVNSTVEQAQNOKVEAITA I AEELE SOIT NCD 337 KSGLQWI RLSTLVTWTMFP VVWFSYTTQL I SFT MTEAGFVLT DIGAKVFLT MVLVNSTVEQAQNOKVEAITA I AEELE SOIT NCD 297 KSGLQWI RLSTLVTWTMFP VVWFSYTTQL I SFT MTEAGFVLT DIGAKVFLT MVLVNSTVEQAQNOKVEAITA I AEELE SOIT NCD 297 KSGLQWI RLSTLVTWTMFP VVWFSYTTQL I SFT MTEAGFVLT DIGAKVFLT MVLVNSTVEQAQNOKVEAITA I AEELE SOIT NCD 297 KSGLQWI RLSTLVTWTMFP VVWFSYTTQL I SFT MTEAGFVLT DIGAKVFLT MVLVNSTVEQAQNOKVEAITA I AEELE SOOT NSD 297 KSGLQWI RLSTLVTWTMFP VVWFSYTTQL I SFT MTEAGFVLT DIGAKVFLT MVLVNSTVEQAQNOKVEAITA I AEELE SOOT NSD 290 TSALKWLRVSTFVSWTLVPVSALAFHAELVSFT AAEAALAVLDIGAKVLLTLVLVNSTVEHAQNOKVEAITA I AEELE SOVNCD Helix 6	422 422 421 381 404
	CTE	
BeRhGC 1-626 CaRhGC 1-626 AmRhGC(07932) 1-748 AmRhGC(09565) 1-585 AmRhGC(13844) 1-659	423 A I L Q KMMP EG VL EQ L K NGQATEAK EYESVTVFFSD I TNFTVI SSRTSTKDMMATLNK 423 A I L Q KMMP EG VL EQ L K NGQATEAK EYESVTVFFSD I TNFTVI SSRTSTKDMMATLNK 423 A I L Q KMMP EG VL EQ L K NGQATEAK EYESVTVFFSD I TNFTVI SSRTSTKDMMATLNK 424 A I L Q KMMP AEYVSTGVGGRDGSRCVI G VL LMEL RALSSVL EQ I K SGQATEAQEYESVTVFFSD I TNFTVI SSRTSTKDMMKTLNM 382 A I L Q KMMP AD 405 A I L E KMMP AT 405 A I L E KMMP AT 405 A I L E KMMP AT	479 479 506 438 461
BeRhGC 1-626 CaRhGC 1-626 AmRhGC(07932) 1-748 AmRhGC(09565) 1-585 AmRhGC(13844) 1-659	B Me Py 480 LWLEYDAIAKRWGVYKVETIGDAYLGVTGAPDVVPDHAERACNFAVDIJEMIKSFKTITGESINIRIGLNSGPVTAGVLGDLNPH 480 LWLEYDAIAKRWGVYKVETIGDAYLGVTGAPEVVPDHADRAVNFALDIJEMIKTFKTATGESINIRIGLNSGPVTAGVLGDLNPH 507 LWLEYDAIAKRWGIYKVETIGDAYLGVAGAPDRVPDHAERCVNFALDIJDMIKAFKSATGESINIRVGLHTGPVTAGVLGDLNPH 439 LWLEYDAIAKKWGIYKVETIGDAYLGVAGAPDRVPDHAERCVNFALDIJDMIKAFKSATGESINIRVGLHTGPVTAGVLGDLNPH 462 LWLEYDAIAKKWGIYKVETIGDAYLGVAGAPDRVPDHAERAVNFALDIJDMIKSFKSATGESINIRVGLHTGPVTAGVLGDLNPH 462 LWLEYDAIAKKWGIYKVETIGDAYLGVAGAPDRVPDHAERAVNFALDIJDMIKSFKSATGESINIRVGLHTGPVTAGVLGDLNPH	564 564 591 523 546
BeRhGC 1-626 CaRhGC 1-626 AmRhGC(07932) 1-748 AmRhGC(09865) 1-585 AmRhGC(13844) 1-659	B Ri/Tr Tr 565 WCLVGDTVNTASRMESTSKAGHIHISESTYHFIKSKFVTQPLDVMEVKGKGKMQTYWVLGRK 565 WCLVGDTVNTASRMESTSKAGHIHISDSTYQMIKGKFVTQPLDLMEVKGKGKMQTYWVLGRK 592 WCLVGDTVNTASRMESTSKAGHIHISDTYKKIKDKFVTQPLDVMDVKGKGKMQTYWVLGRPCHEGVGSPAGAFGLDWGGEDART 524 WCLVGDTVNTASRMESTSKAGHIHISEDTYKKIKDKFVTQPLDVMDVKGKGKMQTYWVLGRK 547 WCLVGDTVNTASRMESTSKAGHIHISEDTYKKIKDRFVTQPLDVMEVKGKGKMQTYWVLGRK 547 WCLVGDTVNTASRMESTSKAGHIHISEDTYKKIKDRFVTQPLDVMEVKGKGKMQTYWVLGRK 547 WCLVGDTVNTASRMESTSKAGHIHISEDTYKKIKDRFVTQPLDVMEVKGKGKMQTYWVVLGRK	626 626 676 585 631
BeRhGC 1-626 CaRhGC 1-626 AmRhGC(07932) 1-748 AmRhGC(09565) 1-585 AmRhGC(13844) 1-659	677 RRKDYRSILNLPSVFATRQDVPVRRPLLRSWGLLCRRSIKNYLLRYEHDQPGPDLPQLEFAAWVIIPRSSAI 748 632 RKTSYGYLENLYFQGTRPLTETSQVAPA 659	

Abb. 10 Sequenz-Vergleich der Rhodopsin-Guanylylzyklasen (RhGCs)

Der Sequenz-Vergleich wurde mithilfe von ClustalOmega¹⁸⁸ erstellt und weiter modifiziert. Rote Umrandungen zeigen Aminosäure-Positionen, die in anderen Rhodopsinen oder Typ III Zyklasen konserviert sind und eine wichtige Rolle im Photozyklus bzw. bei der Katalyse innehaben. GI = Gegenionen der Retinal-Schiffbase, R = hydrophobe Aminosäuren der Retinal-Bindetasche, D/C = D/C-Paar Aminosäuren, die die Kinetik des Photozyklus bei Kanalrhodopsinen steuern¹⁸⁹, RSB = das Retinal-Schiffbase (RSB) bildende Lys, B = Aminosäuren der Zyklase Domäne, die die Nukleotidbase binden, Tr = Aminosäuren, die den Übergangszustand stabilisieren, Ri = Ribose bindende Reste, Me = Metallionen-bindende Aminosäuren. Py = Bindung des terminalen Phosphates. Der Vergleich beruht auf den Sequenzen: BeRhGC: *Blastocladiella emersonii* RhGC (gb: AIC07007.1), CaRhGC: *Catenaria anguillulae* RhGC (gb: MF939579), AmRhGCs: *Allomyces macrogynus* RhGC. Die Sequenzen der AmRhGCs und die Domänen-Einteilung sind über die Zusatzinformation in Avelar et al. zugänglich¹.

Für die Rhodopsin Domäne besteht die höchste Sequenzhomologie zu einer Rhodopsin Phosphodiesterase (RhoPDE) des Choanoflagellaten *Salpinogoeca rosetta*¹, die kürzlich charakterisiert wurde und ebenfalls zu den Enzym-Rhodopsinen gezählt wird. Weiterhin wurde ein phylogenetischer Zusammenhang zur Rhodopsin Domäne der HKRs aus z.B. *Chlamydomonas reinhardtii* festgestellt^{111–113} (siehe Einleitung).

Bei RhGCs folgt der Rhodopsin Domäne ein ~40 Aminosäuren langer Linker (Ausnahme Am07932). In Übereinstimmung mit Avelar et al ¹ kann aufgrund eines Heptadenmusters, d.h. hydrophobe Reste an Position a und d, eine Coiled-Coil Struktur für diesen Bereich vorhergesagt werden (Tabelle 15). Im Vergleich zu Coiled-Coil S-Helices bei GCs liegt kein zentrales ERT Motiv im Linker Segment der RhGCs vor. Darüber hinaus kann am C'-terminalen Coiled-Coil Ende ein Zyklase Transducer Element (CTE) bei RhGCs identifiziert werden (Abb. 10, Anhang Abb. 49), das wie andere Typ III Zyklasen (Abb. 8) ein zentrales Prolin beherbergt ^{152,153}. Bei Am07932 ist der Linker nach diesem Prolin um 28 Aminosäuren verlängert. In Übereinstimmung mit anderen CTEs (Abb. 8) wird angenommen, dass das Prolin ein Abknicken der Coiled-Coil Helix (Abb. 8) induziert.

Ein Sequenz-Vergleich der katalytischen Domäne (Anhang Abb. 49) zeigt in Übereinstimmung mit Avelar et al. eine hohe Übereinstimmung zu Typ III Guanylylzyklasen; die höchste Sequenzhomologie besteht zur GC Domäne der Ret-GC aus *Aedes aegypt*¹. Die GC Domäne von RhGCs verfügt über die sieben konservierte Reste, die bei Typ III Zyklasen essentiell für die Bindung und den Umsatz des Nukleotids sind (Abb. 10). Zentral sind hierbei: zwei Aspartate für die Bindung zweier divalenter Ionen (Me, Abb. 10), die Übergangszustandsstabilisierenden Reste Asparagin und Arginine in Helix 4, sowie Arginin in β 4, das die Abgangsgruppe PPi koordiniert. Wie bei anderen GCs sind die Positionen, die die Nukleotidbase binden, durch Glutamat (497 in Be/CaRhGC) und Cystein (566 in Be/CaRhGC) besetzt, woraus eine GTP-Spezifität der Zyklase abgeleitet werden kann.

2.2 Expression und Charakterisierung der RhGCs in Xenopus Oocyten

Für die experimentelle Charakterisierung der fünf neu-entdeckten Rhodopsin-Guanylylzyklasen (RhGCs) wurden synthetische Konstrukte der Gen-Sequenzen (humane Codon-Nutzung) bei der Firma Genscript bestellt. Die Sequenzen der *Blastocladiella emersonii* (Be) und der *Catenaria anguillulae* (Ca) RhGCs wurden in die NCBI Datenbank vermerkt (BeRhGC: gb: AIC07007.1, CaRhGC MF939579), die Sequenzen der *Allomyces macrogynus* RhGCs sind digital unter der Zusatzinformation von Avelar et al. zugänglich¹.

Um die Funktionsweise der RhGCs als Licht-aktivierte Guanylylzyklasen nachzuweisen, wurde der jeweilige Photorezeptor zusammen mit einem cGMP-sensitiven Reporterkanal, dem "cyclic nucleotide-gated channel", CNG-A2 aus olfaktorischen Rattenneuronen, in der Zellmembran von *Xenopus* Oocyten exprimiert. Der CNG-A2 Kanal verfügt über Bindungsaffinitäten von $K_{1/2(cAMP)} = 36 \mu$ M, $K_{1/2 (cGMP)} = 1.3 \mu$ M¹⁹⁰. Um den Einbau des Retinal Chromophors in das Opsin und damit dessen Funktionsweise zu gewährleisten, wurde dem Oocyten-Inkubationsmedium 5 μ M *all-trans* Retinal zugesetzt. Eine Öffnung der CNG-A2 Reporterkanäle erfolgt nach Bindung von cGMP und führt zum Einstrom von hauptsächlich Na⁺ und Ca²⁺ Ionen ¹⁹¹ und damit verbunden zu einer Membranpotential-Änderung. Dieser Einstrom kann elektrophysiologisch mittels der Two-electrode voltage clamp (TEVC) Methode erfasst werden. Bei der TEVC wird eine konstante Membranspannung (z.B. -40 mV) an die Zelle angelegt und der Kompensationsstrom ("Strom-Elektrode"), der nötig ist, um die Änderung des Membranpotentials durch Öffnung der CNG-A2 Kanäle auszugleichen, gemessen.

Während Grünbelichtung (2 s, 530 nm 0.0127 mW mm⁻², Expression über 3 Tage) von BeRhGC oder CaRhGC zu CNG-A2 vermittelten Einwärtsströmen führte (Abb. 11), konnten bei AmRhGCs unter den gleichen Bedingungen (cRNA: 2.5 ng RhGC, 5 ng CNG-A2) keine Photoströme gemessen werden. Eine Erhöhung der injizierten cRNA Menge (20 ng RhGC, 5 ng CNG-A2), der Expressionsdauer (6 Tage), der Belichtungsintensität und -dauer (10s, 560 \pm 60 nm Breitbandfilter, 0.028 mW mm⁻²) erlaubte schließlich Licht-abhängige CNG-A2 Ströme bei Am09565 (Abb. 11) zu induzieren, während diese Strategie für die RhGCs Am07932 und Am13844 erfolglos blieb.

Aufgrund dieser CNG-vermittelten Ströme bei Be/CaRhGC und Am09565, konnte auf den Licht-abhängigen Anstieg von cGMP rückgeschlossen werden und damit ein erster indirekter Beweis der RhGC Funktionsweise erbracht werden. Verglichen mit Be/CaRhGC waren die maximalen Peak-Amplituden von Am09565 vergleichsweise klein (< 50 nA). Somit wurden CaRhGC und BeRhGC einer detaillierten biochemischen und biophysikalischen Charakterisierung unterzogen, die Gegenstand dieser Arbeit ist.

Abb. 11 Charakterisierung der RhGCs in Xenopus Oocyten mittels TEVC

cRNA der jeweiligen RhGCs wurden zusammen mit der cRNA des cGMP-sensitiven CNG-A2 Reporterkanal in *Xenopus* Oocyten injiziert (Injektionsmengen angegeben). Eine Haltespannung von -40 mV wurde bei den TEVC Messungen an die Zellen angelegt, die Messung erfolgte nach 3 - 6 Tagen. Die Belichtung (grüner Pfeil) erfolgte bei Be/CaRhGC für 2 s, 530 nm \pm 9 nm, 0.0127 mW mm⁻²; bei AmRhGCs für 10 s, 560 nm \pm 60 nm, 0.28 mW mm⁻². Wichtige Auswertparameter sind am Beispiel von CaRhGC dargestellt: die blauen Kreise symbolisieren die Zeitpunkte des linken (t_{50,links}) und rechten Halbmaximums (t_{50,rechts}). Die Zeit zwischen den Halbmaxima wird durch die Halbwertsbreite beschrieben (blau gestrichelt). Die gestrichelte rote Linie zeigt die maximale Peak-Amplitude (bis zur Basislinie). Die grünen Kreise entsprechen 20 % bzw. 80 % der Peak-Amplitude. Dieser Bereich wurde für die Berechnung der Photostrom-Anfangssteigung herangezogen. Der Schnittpunkt einer Geraden durch diese Punkte mit der Basislinie stellt den Fußpunkt dar. Die Zeitspanne zwischen Fußpunkt und Belichtungsstart beschreibt den Signalbeginn. Dieser Bereich (*) ist rechts unten vergrößert dargestellt.

Die Analyse der Photoströme erfolgte mit Stimfit ¹⁹² und Clampfit. Die hierbei zentralen Parameter sind in Abb. 11 verdeutlicht und wurden mithilfe des Python-basierten Stimfit Auswertungs-Skripts (Anhang Tabelle 16) berechnet. Wichtiger Bestandteil der Analyse war die Bestimmung der maximalen Peak-Amplitude (rot gestrichelt in Abb. 11), die indirekt auf die produzierte cGMP Menge hinweist. Ferner wurde die Zeitspanne zwischen Belichtungsbeginn und linkem Halbmaximum ($t_{50,links}$) zur Beschreibung der Photostrom-Anfangskinetik herangezogen. Zudem wurden die 20 % bzw. 80 % Werte der maximalen Peak-Amplitude bestimmt und in diesem Bereich die Anfangssteigung der Stromkurven berechnet. Die Berechnung des Signalbeginns ("time to onset") beruhte auf der Zeitspanne zwischen dem Fußpunkt (Schnittpunkt der Geraden zwischen dem 20 - 80% Wert mit der Basislinie) und dem Belichtungsstart (vergrößert in Abb. 11). Die Zeitspanne zwischen dem Peak-Minimum und dem rechten Halbmaximum ($t_{50,rechts}$) wurden zur Beschreibung der Photostrom-Rückkehrkinetik herangezogen. Darüber hinaus wurde die Peak-Halbwertsbreite, d.h. die Zeit zwischen den Halbmaxima bestimmt. Basierend auf diesen Parametern wurden die nachfolgenden elektrophysiologischen Messungen quantifiziert.

2 Ergebnisse

2.3 BeRhGC Charakterisierung

2.3.1 Expression und Charakterisierung von BeRhGC in Xenopus Oocyten

Die detaillierte Analyse von BeRhGC erfolgte elektrophysiologisch mittels TEVC nach Expression des Photorezeptors und dem cGMP-sensitiven CNG-A2 Kanal in *Xenopus* Oocyten (Abb. 12a). Grün-Belichtung induzierte CNG-vermittelte Einwärtsströme, deren Amplitude mit steigender Lichtintensität zunahm Abb. 12b. Die halb-maximale Sättigung der Photostrom-Anfangssteigungen konnte bei 0.028 mW mm⁻² bestimmt werden (Abb. 12c). Grünlichtpulse gleicher Lichtintensität aber unterschiedlicher Zeit (0.1-1.6 s) zeigten eine Zunahme der Stromamplituden bei nahezu gleich bleibenden Photostrom-Anfangssteigungen (Abb. 12d-e). Hierbei setzten die Photoströme nach 390 ± 35 ms ein. Nach Beendigung der Belichtung wurde die maximale Peak-Amplitude nach 1.9 ± 0.072 s erreicht. Eine längere Belichtung (30 s) führte zu einem fortwährenden Anstieg der Stromamplituden (Abb. 12f), die mit Belichtungsende ein Maximum erreichte. Dies zeigte, dass a) BeRhGC seine Funktion über einen längeren Belichtung zeitraum beibehielt und b) keine Sättigung des cGMP Kanals erreicht war, die den zuvor bestimmten EC50 Wert beeinflussen würde.

Zur Prüfung der Substrat-Spezifität wurde BeRhGC zusammen mit dem mutierten CNG-A2 Kanal, der gegenüber dem wt Kanal über eine erhöhte cAMP Bindungsaffinität und eine verringerte cGMP Affinität verfügt (C460W/E583M, ($K_{1/2(cAMP)} = 0.89 \mu$ M, $K_{1/2(cGMP)} = 6.2 \mu$ M), in Oocyten exprimiert. Grünbelichtung induzierte im Gegensatz zu den vorherigen Experimenten keine Photoströme. Dahingegen zeigten Kontroll-Oocyten, die mit bPAC und dem cAMP-sensitiven CNG injiziert waren, Blaulicht induzierte Einwärtsströme (Abb. 12g). Dies bedeutet, dass a) BeRhGC keine eigene Pump-/Kanal-Aktivität vorweist und b) BeRhGC eine hohe Substrat-Selektivität für GTP besitzt.

Abb. 12 BeRhGC Charakterisierung in Xenopus Oocyten

(a) Modell einer Xenopus Oocyte, die BeRhGC (Homodimer) mit dem cGMP-sensitiven Reporterkanal CNG-A2 exprimierte. (b) Repräsentative Photoströme (n=6) einer Xenopus Oocyte mit BeRhGC (2.5 ng) und dem cGMP-sensitiver CNG-A2 (5 ng) (2 s, 560 ± 60 nm) (c) Beruhend auf (b) konnte die halbmaximale Sättigung der Photostrom-Anfangssteigungen bei 0.028 mW mm⁻² (monoexponentiellen Fit, $R^2 = 0.99$) bestimmt werden. (d) Einwärtsströme von BeRhGC/CNG-A2 exprimierenden Oocyten nach kurzer Belichtung (530 ± 9 nm, 0.006 mW mm^{-2} , 0.1, 0.4, 0.7, 1.0, 1.3, und 1.6 s, -20 mV) (e) Vergrößerung der grauen Region aus (d) zeigt die Photostrom-Anfangssteigungen. (f) Einwärtsströme nach 30 s Belichtung $(530 \pm 9 \text{ nm})$ steigende Intensität, -20 mV). (g) Photostrom einer Oocyten, die BeRhGC zusammen mit dem cAMP-sensitiven CNG-A2 Kanal (C460W/E583M) (560 ± 60 nm, 2s, schwarze Spur) bzw. bPAC (100 pg RNA) und den cAMP-sensitiven CNG-A2 Kanal (C460W/E583M, 20 ng) exprimierte (3 s, 450 nm, 0.03 mW mm⁻², blaue Spur). (d-g) RNA: 5 ng BeRhGC & CNG-A2. (b-g) die Photoströme sind repräsentativ für mindestens 5 Oocyten. ELISA Quantifizierung von cGMP (h) oder cAMP (i) aus Oocyten Lysaten 5 Tage nach Injektion (10 ng BeRhGC, 1 ng bPAC) der dunkel-adaptierten Oocyten (D) oder nach Belichtung (L, 5 min, 522 nm, 0.01 mW mm⁻²). Dargestellt sind die cNMP-Konzentrations-Mittelwerte und Standardfehler. Mann-Whitney Vergleich, **P < 0.01, ****P < 0.001, ns = nicht signifikant, RhGC = Rhodopsin-Guanylylzyklase, Modifizierte Abbildung aus Scheib et al ¹⁹³.

Die bisher dargestellten TEVC-Messungen beruhen auf der Aktivierung des cGMP/cAMPsensitiven CNG Reporterkanals und erlauben nur indirekt, auf die Anwesenheit cyclischer Nukleotide rückzuschließen. Um einen direkten Zusammenhang zwischen der BeRhGC-Aktivierung und dem cGMP Anstieg festzustellen, wurden Lysate injizierter Oocyten einer immunhistochemischen Analyse (ELISA) unterzogen (Abb. 12h-i), die eine Quantifizierung der intrazellulären cGMP/cAMP Konzentrationen erlaubt. In Übereinstimmung mit den vorherigen TEVC-Ergebnissen bestätigten die ELISA Experimente eine Grünlicht-abhängige Zunahme von cGMP (22.1 ± 1.6 pmol/Oocyte) der BeRhGC-exprimierenden Zellen. Im Dunkeln lag die cGMP Konzentration dieser Zellen (0.3 ± 0.08 pmol/Oocyte) auf dem Niveau von nichtinjizierten Kontrollzellen (0.1 ± 0.02 pmol/Oocyte). Lichtaktivierung erhöhte den cGMP Gehalt ~100x. In Anbetracht parallel ablaufender Prozesse, die zur Erniedrigung des cGMP-Pools führen (z.B: cGMP Abbau durch PDEs, oder Bindung von cGMP an Effektorproteine) könnte dieses dynamische Fenster noch weiter erhöht sein. Darüber hinaus bestätigen die ELISA Analysen die BeRhGC Substrat-Spezifität für GTP, da eine Zunahme von cAMP nach Belichtung für BeRhGC nicht feststellbar war, während diese bei bPAC-injizierten Kontroll-Oocyten messbar war (Abb. 12i).

In weiteren TEVC Experimenten wurde BeRhGC zusammen mit dem neu-entdeckten K⁺leitenden CNG Kanal aus *Blastocladiella emersonii*¹ in Oocyten exprimiert und untersucht. Im Gegensatz zu den vorherigen Ergebnissen, konnten keine cGMP-vermittelten Ströme mithilfe von Licht induziert werden. Dies könnte auf eine immanente Inaktivität des BeCNG Kanals oder auf eine eingeschränkte Expression des Kanals hindeuten.

2.3.2 Spektroskopische Analyse der aufgereinigten Rhodopsin Domäne (Be)

Nachdem die Funktionsweise von BeRhGC als Licht-aktivierte Guanylylzyklase bestätigt war, wurde die zugrundeliegende Photochemie der isolierten Rhodopsin Domäne untersucht. Bei anderen mikrobiellen Rhodopsinen induziert Licht bestimmter Wellenlänge einen Photozyklus, der durch eine sequentielle Abfolge spezifisch-absorbierender Intermediate gekennzeichnet ist (siehe Einleitung). Die spektroskopische Analyse von BeRhGC erfolgte nach rekombinanter Expression der Rhodopsin Domäne (1 – 396 AS) in *P. pastoris* und Aufreinigung von BeRh in Detergenz. Das UV-VIS Spektrum (Abb. 13a) von dunkel-adaptierten BeRh zeigte ein Rhodopsin-typisches Absorptionsspektrum mit einem Absorptionsmaximum bei 525 nm (D₅₂₅). Grünbelichtung reduzierte die Absorption bei 525 nm und überführte BeRh in einen Zustand mit maximaler Absorption bei 380 nm (M₃₈₀). In Übereinstimmung mit anderen mikrobiellen Rhodopsinen wird die Absorption in diesem Wellenlängenbereich (M₃₈₀) auf eine deprotonierte Retinal-Schiffbase zurückgeführt ^{17,18}. Ein thermischer Zerfall der M₃₈₀-Spezies in den

Dunkelzustand (D₅₂₅) war vornehmlich nach kurzen Belichtungsdauern (5 s) beobachtbar. Grünbelichtung >5 min führte dahingegen zu einer weiteren Absorptions-Akkumulation der M₃₈₀ Spezies und die Rückkehr in den D₅₂₅-Zustand war verringert. Für die detaillierte Analyse des Photozyklus wurden zeitaufgelöste Blitzlicht-Photolyse Experimente durchgeführt und BeRh mit einem 10 ns Laserpuls (525 nm) angeregt. Die Detektion der zeitabhängigen Absorptionsänderung bei 380 nm, erlaubte es τ -Werte von 8 ms und 93 ms für die Bildung bzw. den Zerfall der M₃₈₀- Spezies zu bestimmen (Abb. 13b). Ferner wurden nach Laser-Anregung (10 ns, 525 nm) Spektren (350 nm - 650 nm) zwischen 10⁻⁷ s bis 1 s von BeRh aufgenommen. Dies erlaubte die Detektion eines rot-verschobenen Intermediates - P₅₈₀ - das innerhalb von 8 ms in das M₃₈₀ Intermediat überging (Abb. 13c).

(a) Das UV-VIS-Spektrum zeigt die Absorptionsmaxima der dunkel-adaptierten und belichteten $(1 \text{ min}, 505 \text{ nm}, 0.07 \text{ mW mm}^2)$ Rhodopsin Domäne (in Detergenz, pH = 8). Die grauen Linien weisen auf die Wellenlängen hin, die bei der Blitzlicht-Photolyse (b) zur Detektion Das Differenzspektrum (Licht-Dunkel) herangezogen wurden. ist oberhalb des Absorptionsspektrums dargestellt. (b) Transiente Absorption bei 380, 505 und 550 nm nach Applikation eines 10 ns Grünlicht-Impulses (525 nm). (c) Zeit-aufgelösten Absorptionsänderungen nach einem 10 ns Grünlich-Impuls (525 nm) und Identifizierung bestimmter Photozyklus nach Singulärwertzerlegung. Die Absorptionszunahme (rot) und Absorptionsabnahme (blau) sind dargestellt. (d) Vereinfachter Photozyklus: Grünlicht überführt den Dunkelzustand, D₅₂₅, in das rotverschobene Photointrmediat P₅₈₀, das in den deprotonierten Zustand M380 übergeht. Die Wiederherstellung des Dunkelzustands erfolgt mit einem τ-Wert von 93 ms. mOD = milli-optische Dichte. Modifizierte Abbildung aus Scheib et al ¹⁹³, die Daten wurden von Katja Stehfest erhoben.

Zusammenfassend für die spektroskopischen Experimente kann ein vorläufiger Photozyklus formuliert werden (Abb. 13d); Grünbelichtung überführt dunkel-adaptiertes BeRh (D_{525}) in das rot-verschobene Photointermediat P_{580} , das innerhalb von 8 ms zur M_{380} Spezies zerfällt. M_{380} kehrt thermisch innerhalb von 93 ms in den Dunkelzustand D_{525} zurück. Ob das M_{380} -Intermediat dem cGMP-bildenden Signalzustand zugeordnet werden kann, wird an späterer Stelle diskutiert.

2.3.3 Enzymatische Aktivität des Volllängen BeRhGC Konstrukts

Um die enzymatischen Eigenschaften von BeRhGC zu charakterisieren wurde das membranständige Volllängen Konstrukt in Insektenzellen exprimiert und mithilfe einer Ni-NTA- und Gelfiltrationssäule in Detergenz aufgereinigt. Es erfolgte die Bestimmung der Anfangsgeschwindigkeiten bei unterschiedlichen GTP Konzentrationen unter Belichtung und in Dunkelheit (Abb. 14). Das gebildete cGMP wurde mithilfe einer Umkehrphase-HPLC detektiert. Die Initialgeschwindigkeiten bei Belichtung sättigten - entsprechend einer Michaelis-Menten Enzymkinetik - bei höheren GTP Konzentrationen und die maximale Umsatzgeschwindigkeit, v_{max}, konnte mit $1.8 \pm 0.2 \,\mu$ mol_{cGMP} min⁻¹ mg_{protein}⁻¹ bestimmt werden (Tabelle 1). Vergleichbar mit Trieu et al (K_{M(GTP)} = $0.9 \pm 0.3 \,$ mM, k_{cat} = $2.2 \,$ s⁻¹ ²⁷) wurde ein beinahe übereinstimmender K_{M(GTP)} Wert von $0.92 \pm 0.24 \,$ mM und ein k_{cat} Wert von $1.1 \,$ s⁻¹ festgestellt.

Abb. 14 Enzymatische Aktivität des aufgereinigten BeRhGCs

Die Bestimmung der Enzymaktivität basierte auf der cGMP Syntheseleistung. cGMP wurde mithilfe einer Umkehrphase-HPLC detektiert. Die enzymatischen Anfangsgeschwindigkeiten wurde bei verschiedenen GTP Konzentrationen (0.5 - 8 mM GTP/Mn²⁺, pH 7.5, n=3) unter (a) Belichtung (522 nm, 1 μ W mm⁻², Dunkelwerte subtrahiert, grüne Linie) oder Dunkelheit (schwarze Linie) bestimmt. Ein Hill-Fit der belichteten Proben (Dunkelwerte subtrahiert) erlaubte die Bestimmung der enzymatischen Parameter, siehe Tabelle 1.

Für die Dunkelproben konnte eine lineare Abhängigkeit der Umsatzgeschwindigkeit von der Substrat-Konzentration ermittelt werden. Ein 4-faches Licht-zu-Dunkel Verhältnis wurde nach Subtraktion der Dunkelwerte von den Lichtwerten bestimmt. Mit zunehmender Substrat-Konzentration (8 mM) reduzierte sich dieses Verhältnis auf 1.2x. Im Vergleich zu den vorherigen Oocyten ELISA Experimenten (Abb. 12h) ist diese BeRhGC Licht-zu-Dunkel-Aktivität ~25x kleiner. Dies deutet auf einen destabilisierenden Effekt des Detergenz hin, der die BeRhGC Dunkelaktivität begründet.

2.3.4 Charakterisierung der isolierten BeGC Domäne, ohne und mit Coiled-Coil

Um herauszufinden, ob die Rhodopsin Domäne essentiell für die enzymatische Aktivität der Zyklase Domäne ist, wurde die lösliche Zyklase Domäne ohne den Coiled-Coil Linker (BeGC 443-626 AS) aufgereinigt. Dazu wurde die nicht-membranständige, His-tag markierte BeGC in *E.coli* Zellen exprimiert und das Protein über eine Ni-NTA Säule aufgereinigt (Abb. 15). Die Protein-enthaltenden Fraktionen wurden gesammelt, aufkonzentriert und auf eine Gelfiltrationssäule appliziert (Abb. 16). In Übereinstimmung mit der BeGC-Aufreinigung (Synonym: GC_{Rho}) von Kumar et al ¹⁹⁴ konnte ein monomeres Laufverhalten von BeGC bei der Gelfiltration beobachtet werden.

Das BeGC enthaltende *E.coli* Lysat wurde auf eine Ni-NTA Säule (5 ml) appliziert. Nach Waschen der Säule (20 Säulenvolumen, 20 und 50 mM Imidazol) wurde BeGC mit einem Imidazol-haltigen Puffer eluiert (500 mM Imidazol).

Abb. 16 Gelfiltration (16/60 Sephacryl S100) von BeGC und SDS-Page

Die Auftragung von BeGC erfolgte über einen 5 ml Loop. BeGC eluierte bei ~64 ml (20 mM Tris/HCl, 50 mM NaCl pH 8.0). Rechts: SDS-Page von BeGC. Theoretisches Molekulargewicht von BeGC: 21.5 kDa.

An dieser Stelle sei daran erinnert, dass eine Dimerisierung essentiell für die Typ III Zyklase Funktion ist ¹³⁰. Bei der bakteriellen GC Cya2 aus *Synechocystis PCC6803* ¹³⁴ konnte das Monomer/Dimer-Gleichgewicht durch unterschiedliche Salzkonzentrationen verschoben werden. Dahingegen hatten unterschiedliche Bedingungen (50 mM NaCl, 200 mM NaCl, 10 mM DTT, 5 mM cGMP/GTP) keinen Einfluss auf die BeGC Dimerisierung (analytischen Gelfiltration, Superdex75, Daten nicht gezeigt).

In den folgenden in-vitro Aktivitätstests wurde nach Zugabe von GTP/Mn²⁺ eine konstitutive cGMP Synthese bei BeGC festgestellt (Abb. 17). Auftragung der Enzymanfangsgeschwindigkeiten gegen die Substratkonzentrationen zeigte eine Michaelis-Menten entsprechende Enzymkinetik für BeGC (Abb. 17b) und die enzymatischen Parameter wurden mithilfe eines Hill-Fits berechnet (Tabelle 1). Im Vergleich zum Volllängen Konstrukt BeRhGC konnte für BeGC ein größerer K_M Wert mit 2.16 ± 0.30 mM, und ein kleinerer v_{max} mit $40.67 \pm 3.87 \,\mu\text{mol}_{cGMP} \,\text{min}^{-1} \,\mu\text{mol}_{\text{protein}}^{-1}$, $k_{cat} = 0.34 \,\text{s}^{-1}$ bestimmt werden. Das pH Optimum von BeGC wurde bei pH = 8 identifiziert (Abb. 17c). Darüber hinaus zeigte sich, dass Mn^{2+} essentiell für die Enzymaktivität war, während weder Ca²⁺ noch Mg²⁺ zu einer messbaren cGMP Synthese führten. Das Vorliegen von Mn^{2+} und Ca^{2+} oder Mn^{2+} und Mg^{2+} erhöhte die Syntheseleistung weiter (Abb. 17d). Ferner konnte die Substratspezifität auch bei der isolierten Zyklase bestätigt werden und eine Bildung von cAMP war nach Zugabe von ATP/Mn²⁺ nicht messbar (Abb. 17d). Ferner konnte die BeGC vermittelte cGMP Synthese durch die GTP Guanosin-5'-(α -thio)-triphosphat $(GTP\alpha S)$ und Guanosin-5'- $[(\alpha,\beta)$ -Analoga methylen]triphosphat (GPCPP) inhibiert werden (Abb. 17e).

Neben den Aktivitätsmessungen mit aufgereinigtem Protein, wurde die isolierte Zyklase, BeGC, in Oocyten exprimiert. In Übereinstimmung mit den *in-vitro* Daten war die intrazelluläre cGMP Konzentration bei BeGC Oocyten bereits im Dunkeln deutlich erhöht, verglichen mit nicht-injizierten Kontrollzellen (dunkel: cGMP 4.3 ± 0.24 pmol/Oocyte, belichtet: cGMP 5.6 ± 1.3 , nichtinjiziert: (0.1 ± 0.02 pmol/Oocyte).

Abb. 17 Enzymatische Aktivität der isolierten BeGC Domäne

Die Bestimmung der Enzymaktivität basierte auf der cGMP Syntheseleistung. cGMP wurde mithilfe einer Umkehrphase-HPLC detektiert (a) SDS Gel der aufgereinigten BeGC Domäne nach *E.coli* Expression (Molekulargewicht = 21.5 kDa). (b) Michaelis-Menten Enzymkinetik der isolierten Guanylylzyklase Domäne. BeGC, Die enzymatischen Anfangsgeschwindigkeiten wurde bei verschiedenen GTP Konzentrationen (0.5 – 7 mM GTP/Mn²⁺, pH 7.5, n=3) bestimmt und die enzymatischen Parameter durch einen Hill-Fit abgeleitet (Tabelle 1). (c) pH Abhängigkeit der BeGC Aktivität nach 5 min Inkubation (1 mM GTP/Mn2⁺), die Daten zeigen die cGMP Peak-Flächen (mAU*min) pro mg Protein. (d) Abhängigkeit der BeGC Aktivität von unterschiedlichen Substraten und Co-Substraten (1 mM, 5 min Inkubation, pH 7.5). (e) Inhibition der BeGC Enzymaktivität durch die GTP-Analoga GPCPP (0.7 mM) und GTP α S (1.4mM) nach 10 min Inkubation (pH 7.5, 0.5 mM GTP/Mn²⁺). (f) Vergleich der Enzymaktivität der Guanylylzyklase mit und ohne Coiled-Coil (CC) Linker nach Inkubation der aufgereinigten Proteine über 10 min mit 1 mM GTP/Mn²⁺ (pH 7.5). Die Balkendiagramme zeigen Mittelwerte und zugehörige Standardfehler. Be = Blastocladiella emersonii, GC = Guanylylzyklase, HPLC = High Pressure Liquid Chromatography, CC-GC = Guanylylzyklase mit Coiled-Coil Domäne, GPCPP = Guanosin-5'-[(α,β) -methylen]triphosphat, GTP α S = Guanosin-5'-(α -thio)-triphosphat. Modifizierte und erweiterte Abbildung basierend auf Scheib et al. 2018¹⁸⁷.

Um den Einfluss des Coiled-Coil Linkers auf die Enzymaktivität zu untersuchen, wurde das entsprechend verlängerte Konstrukt, BeCC-GC (397 - 626 AS) in *E. coli* exprimiert und aufgereinigt (gemäß BeGC: Abb. 15, Abb. 16). Auch für BeCC-GC wurde ein monomeres Lauf-Verhalten bei der Gelfiltration festgestellt (vergleichbar mit Abb. 16). Wie für BeGC alleine konnte für BeCC-GC eine konstitutive Enzymaktivität festgestellt werden, die jedoch im Vergleich zu BeGC ~5x reduziert war (Abb. 17f).

Trotz des monomeren Lauf-Verhaltens bei den Gelfitrationsanalysen (Abb. 16) wird in Übereinstimmung mit der Literatur ¹³⁰ eine temporäre Dimerisierung für BeGC und BeCC-GC angenommen, die die konstitutive Enzymaktivität ermöglicht.

Im Anschluss an die enzymatische Analyse wurde die BeGC Bindungsaffinität für GTP und ATP getestet. Nach Titration des jeweiligen Substrats zu BeGC wurde die Abnahme der Trypotphan-Fluoreszenz gemessen. Für GTP konnte ein $K_{D,GTP}$ Wert von $84 \pm 8 \ \mu M \ (n = 3)$ bestimmt werden. Obwohl ein enzymatischer Umsatz von ATP nicht feststellbar war (Abb. 17d), konnte ein $K_{D,ATP}$ Wert von 531 μM gemessen werden. Ähnlich zu anderen Zyklasen lässt dies darauf schließen, dass die Substratdiskriminierung nach der initialen Bindung, während der Katalyse stattfindet ¹²⁰ und ATP als kompetitiver Inhibitor fungiert.

2.3.5 Die Bedeutung des N'-Terminus für die BeRhGC Funktion

Im Vergleich zu anderen mikrobiellen Rhodopsinen verfügen RhGCs über einen untypisch verlängerten intrazellulären N'-Terminus (~200 AS, Abb. 10), für den zwei zusätzliche Helices vorhergesagt wurden. Im Gegensatz zu anderen RhGCs fallen bei BeRhGC SG-Wiederholungen vor Helix -1 auf. Um die Frage zu beantworten, ob der untypische N'-Terminus Einfluss auf die Photorezeptor-Funktion nimmt, wurden verkürzte BeRhGC Konstrukte erstellt. Für die Auswahl der Schnittstellen (tr) wurden die vorhergesagten Sekundärstrukturelemente (Helix -1, Helix 0, Abb. 18), sowie die Position der SG-Wiederholungen (104 - 122) bei BeRhGC berücksichtigt. Während bei den tr43 und tr79 BeRhGC Varianten der N'-Terminus mit seinen vorhergesagten Helices -1 und 0 weitgehend erhalten blieb, befand sich bei der tr139 Variante die Schnittstelle am Ende der ersten vorhergesagten Helix -1. Bei diesem Konstrukt (tr139BeRhGC) wurde ein natürliches internes ATG als Translationsstartcodon genutzt.

Abb. 18 Sequenzen der verkürzte BeRhGC Varianten Die Pfeile markieren die Schnittstellen, an denen BeRhGC verkürzt wurde.

Die Aktivität der generierten Konstrukte wurde elektrophysiologisch (TEVC) mithilfe des cGMP sensitiven Reporterkanal CNG-A2 in *Xenopus* Oocyten untersucht. Bei allen Varianten führte Grün-Belichtung zur Induktion von einwärtsgerichteten Photoströmen (Abb. 19a). Während die maximale Peak-Amplitude im Fall von tr43 ca. 3-fach vergrößert war, im Vergleich zur unverkürzten BeRhGC, zeigte die tr79 Variante wt-ähnliche Amplituden nach 500 ms Belichtung (Abb. 19b). Einhergehend mit der vergrößerten Amplitude konnte für tr43 ein schnellerer Signalbeginn (270 ms, wt: 450 ms), ein schnelleres Erreichen des linken Halbmaximums (604 ms, wt: 814 ms), eine vergrößerte Peak-Halbwertsbreite (11118 ms versus wt: 4054 ms) und eine langsamere Rückkehr zur Basislinie (Zeit zw. Peak und rechtem Halbmaximum: 10503 ms versus wt: 3383 ms) im Vergleich zu wtBeRhGC festgestellt werden (Abb. 19c). Dahingegen verhielt sich tr79 ähnlich wie der Wildtyp (Abb. 19b-d). Im Anhang (Tabelle 17) sind die detaillierten Parameter dieser elektrophysiologischen Charakterisierung (Abb. 19, tr43, tr79, wtBeRhGC) aufgeführt.

Im Gegensatz zu tr43 und tr79 führte eine weitere Verkürzung von BeRhGC, tr139 Variante, zu einer drastischen Reduktion der RhGC Aktivität, die mit einer ca. 20-fach reduzierten Peak-Amplitude einherging (Abb. 19e,f, Anhang Tabelle 17).

Abb. 19 Elektrophysiologische Charakterisierung der N⁴-terminal verkürzten BeRhGCs Die TEVC Messungen erfolgten 3 Tage nach der cRNA Injektion, -40 mV Haltespannung. Xenopus Oocyten wurden mit 5 ng cRNA tr43/tr79/tr139/wtBeRhGC und mit 5 ng cRNA des cGMP sensitiven Reporterkanals (CNG-A2(cGMP)) injiziert. **(a)** Repräsentative Einwärtsströme 500 ms nach Grünbelichtung (530 ± 9 nm, 0.0127 mW mm⁻²) von Oocyten, die CNG-A2(cGMP) zusammen mit wtBeRhGC (schwarze Spur, n=9), tr79 (blaue Spur, n=4) oder tr43 (orange Spur, n=8) exprimierten. (b-d) Vergleich der Photostrom-Parameter: Amplituden und Kinetiken von wt, tr43 und tr79 aus (a). (e) Repräsentative Einwärtsströme 2000 ms nach Grünbelichtung $(530 \pm 9 \text{ nm}, 0.0127 \text{ mW mm}^2)$ von Oocyten, die CNG-A2(cGMP) zusammen mit wtBeRhGC (schwarze Spur, n=8) oder tr139BeRhGC (graue Spur, n=20) exprimierten. (f) Vergleich der maximalen Photostrom-Amplituden von wtBeRhGC und tr139. Die Mittelwerte und zugehörigen Standardfehler sind dargestellt, Zweistichproben-t-test: *P < 0.05, **P < 0.01, ****P < 0.001, ns = nicht signifikant, CNG = Cyclic Nucleotide Gated Channel, BeRhGC = Rhodopsin-Guanylylzyklase aus *B. emersonii*, tr = truncated (verkürzt)

Eine immunhistochemische Überprüfung (Abb. 20) des intrazellulären cGMP Gehalts in Oocyten Lysaten mittels ELISA bestätige die Aktivitätszunahme von tr43BeRhGC gegenüber wtBeRhGC mit einer ca. 3-fach erhöhten cGMP-Konzentration nach Belichtung (51 pmol/µl versus wt: 16 pmol/µl). Eine signifikante Zunahme von cAMP war weder für wt (Abb. 12) noch für tr43 zu beobachten (cAMP 1.38 ± 0.19 pmol/µl (n=4) versus nicht-injizierten Kontroll-Oocyten: 1.08 ± 0.05 pmol/µl, n=3, Abb. 12). Bei der tr139 Variante konnte der Aktivitätsverlust mit einem 6-fachen Rückgang der Licht-induzierte cGMP Akkumulation gegenüber dem wt bestätigt werden (2.7 pmol/µl versus wt 16 pmol/µl, Abb. 20).

Abb. 20 Vergleich der intrazellulärer cGMP-Konzentrationen der unverkürzten und verkürzten BeRhGC Versionen mittels ELISA

5 Tage nach Injektion (10 ng cRNA der angegebenen Konstrukte) wurde der intrazelluläre Gehalt an cGMP in dunkel-adaptierte Oocyten (D) oder grün-belichtete Oocyten (L) (5 min, 522 nm, 0.01 mW mm⁻²) mithilfe eines ELISA Tests quantifiziert. Die Mittelwerte und zugehörigen Standardfehler sind dargestellt, Zweistichproben-t-test: ****P < 0.001, wt = Wildtyp Rhodopsin-Guanylylzyklase aus *B.emersonii*, tr = truncated (verkürzt).

Zusammenfassend zeigen diese Messungen (Abb. 19, Abb. 20), dass eine N^c-terminale Verkürzung die Enzymaktivität moduliert. Ob dies auf Expressionsunterschiede der einzelnen Konstrukte oder auf eine regulative Funktion des N²-Terminus zurückzuführen ist, bleibt zu klären.

2.3.6 Modifikation der BeRhGC Kinetik

Die kinetischen Eigenschaften mikrobieller Rhodopsin-basierter Photorezeptoren werden durch die Geschwindigkeit des Photozyklus vorgegeben. Bei Kanalrhodopsin (ChR2) werden diese Zeitkonstanten durch Aminosäuren in/nahe der Retinal-Bindetasche - insbesondere durch ein Aspartat-Cystein-Paar (D/C Paar, in ChR2: D156/C128) - beeinflusst. Mutationen des DC-Paars bei ChR2 führten z.B. im Fall von C128T zur einer ~167x und im Fall von D156A zu einer ~22500x verlangsamten Rückkehrkinetik verglichen mit dem Wildtyp ^{189,195}. Durch die zeitlich verlängerte Kanalaktivität dieser sogenannten Step-Function-Opsine werden diese bevorzugt bei Verhaltensstudien eingesetzt ^{69,95,196}. Die mechanistischen Hintergründe des DC-Paars auf die Photorezeptor Kinetik sind noch nicht geklärt ^{79,197,198} und Gegenstand weiterer Forschungen.

Bei BeRhGC und anderen RhGCs konnte das Vorhandensein des DC-Paars durch einen Sequenz-Vergleich (Abb. 10) gezeigt werden (C259 und D283). Der Einfluss dieser Positionen auf die BeRhGC Rückkehr-Kinetik wurde mittels TEVC Messungen (Co-Expression von CNG-A2) im Rahmen der Masterarbeit von Rodrigo Fernandez untersucht. Während die induzierten Photoströme bei der C259A Variante nicht in Richtung Basislinie zurückkehrten (Daten nicht gezeigt) und somit eine Rückkehrkinetik nicht analysiert werden konnte, fokussierte sich die detaillierte elektrophysiologische Charakterisierung auf die C259T und D283S Mutante (Abb. 21, Abb. 22).

Im Fall von C259T konnte eine 5x verlangsamten Anfangskinetik, d.h. eine ~5-fach verlängerten Zeitspanne zwischen dem Erreichen des linken Halbmaximums (t_{50} ,links) und dem Peak-Minimum (Abb. 21b) festgestellt werden. Weiterhin war die Rückkehrkinetik von C259T gegenüber wtBeRhGC verlangsamt und die Zeitspanne zwischen dem Erreichen des Peak-Minimum und dem rechten Halbmaximum verlängert (t_{50} , rechts: 65.4 ± 22.1 s versus wt: 11.7 ± 3.4 s), bei ähnlich großen maximalen Peak-Amplituden (Abb. 21c,d). An dieser Stelle sei auf die graphische Darstellung der Auswertparameter z.B. linkes/rechtes Halbmaximum verwiesen (Abb. 11).

Abb. 21 Elektrophysiologische Charakterisierung der C259T BeRhGC Variante

Für den Vergleich von wtBeRhGC und C259T BeRhGC wurden Oocyten mit jeweils 2.5 ng cRNA injiziert, im Beisein des cGMP-sensitiven CNG-A2 Kanals (5 ng cRNA). Nach 3-4 Tagen erfolgten die elektrophysiologischen Messungen, mittels TEVC, -40 mV Haltespannung. (a) Repräsentative CNG-A2 vermittelte Einwärtsströme 1 s nach Grünbelichtung (Pfeil, 560 \pm 60 nm, 0.28 mW mm⁻²) von wtBeRhGC und C259T BeRhGC (b) - (d) Vergleich der Photostrom-Parameter von wt und C259TBeRhGC aus (a). Zweistichproben-t-Test (unabhängige Stichproben), *P < 0.05, **P < 0.01, ****P < 0.001, ns = nicht signifikant. CNG = Cyclic Nucleotide Gated Channel, BeRhGC = Rhodopsin-Guanylylzyklase aus *Blastocladiella emersonii*, Experim. = Experiment. Modifizierte Abbildung aus der Masterarbeit von Rodrigo Fernandez, die Daten wurden von Rodrigo Fernandez erhoben.

Bezüglich der D283 Position wurde die Variante D283N BeRhGC generiert, bei der - ähnlich zu C259A - die Photoströme auch nach kurzer Belichtung nicht zur Basislinie zurückkehrten. Dahingegen konnte die D283S Mutante elektrophysiologisch charakterisiert werden (Abb. 22). Im Vergleich zum wt konnten bei D283S größere maximale Peak-Amplituden gemessen werden (2 von 3 Experimenten),einhergehend mit einer ~10-fach verlangsamten Anfangskinetik und einer stark verlangsamten Rückkehrkinetik (D283S: 384 ± 180s, wt: 7 ± 1.6s) (Abb. 22b-d).

Abb. 22 Elektrophysiologische Charakterisierung der D283S BeRhGC Variante

Für den Vergleich von wtBeRhGC und D283S BeRhGC wurden Oocyten mit jeweils 2.5 ng cRNA injiziert, im Beisein des cGMP-sensitiven CNG-A2 Kanals (5 ng cRNA). Nach 3-4 Tagen erfolgten die elektrophysiologischen Messungen, mittels TEVC, -40 mV Haltespannung. (a) Repräsentative CNG-A2 vermittelte Einwärtsströme nach Grünbelichtung (Pfeil, 500 ms, 560 \pm 60 nm, 0.28 mW mm⁻²) von wtBeRhGC und D283S BeRhGC (b) - (d) Vergleich der Photostrom-Parameter von wt und D283BeRhGC aus (a). Die Balkendiagramme zeigen Mittelwerte und zugehörige Standardfehler. Zweistichproben-t-Test (unabhängige Stichproben), *P < 0.05, **P < 0.01, ****P < 0.001, ns = nicht signifikant. CNG = Cyclic Nucleotide Gated Channel, BeRhGC = Rhodopsin-Guanylylzyklase aus *Blastocladiella emersonii*, Experim. = Experiment. Modifizierte Abbildung aus der Masterarbeit von Rodrigo Fernandez, die Daten wurden von Rodrigo Fernandez erhoben.

An dieser Stelle sei daran erinnert, dass die Bestimmung der kinetischen Parameter indirekt ist. Bei den analysierten Photoströmen handelt es sich um CNG-A2 vermittelte Einwärtsströme, die auf der Akkumulation von cGMP beruhen. Jedoch bestätigte eine UV/VIS Spektroskopische Untersuchung der Rhodopsin Domänen eine langsamere Rückkehr-Kinetik zum Dunkelzustand, mit $\tau = 5.7 \pm 0.36$ s bei C259T und $\tau = 6.3 \pm 0.05$ s bei D283S gegenüber wtBeRhGC ($\tau = 1.2 \pm$ 0.07 s). Das Absorptionsmaximum der dunkel-adaptierten Photorezeptoren lag bei allen Proteinen (wt und Mutanten) bei ca. 524 nm.

Weiterhin wurde die dunkel- und Licht-induzierte Akkumulation von cGMP nach Expression der C259T und D283S Konstrukte in Oocyten mithilfe von ELISA Analysen untersucht. Während die Dunkelaktivität der Mutanten nicht vom wt abwich, konnte eine ~4x Licht-induzierte cGMP Zunahme bei C259T und eine ~6x Zunahme bei D283S gegenüber dem wt beobachtet werden (Abb. 23). Diese cGMP Erhöhung korrelierte mit den vergrößerten Peak-Amplituden von D283S (C259T) der TEVC Messungen (Abb. 21, Abb. 22).

Abb. 23 Immunhistochemische Quantifizierung von cGMP in Oocyten Lysaten

5 Tage nach Injektion der C259T oder D283S BeRhGC cRNA (10 ng) wurden die Zellen im Dunkeln inkubiert oder vor der Lyse belichtet (belicht.). Die Werte zeigen die cNMP Zunahme gegenüber des wtBeRhGC, angegeben sind Mittelwerte und zugehörige Standardfehler, Zweistichproben-t-Test (unabhängige Stichproben): ns = nicht signifikant, ELISA = Enzymelinked immunosorbent assay. Modifizierte Abbildung aus der Masterarbeit von Rodrigo Fernandez, die Daten wurden von Rodrigo Fernandez erhoben.

2.3.7 Modifikation der spektralen Eigenschaften von BeRhGC

Die spektralen Eigenschaften mikrobieller Rhodopsine leiten sich von der Energiedifferenz ab, die überwunden werden muss, um delokalisierte Elektronen vom Grundzustand π in den angeregten Zustand π^* zu bringen. Diese Differenz wird von der Größe des delokalisierten Elektronensystems (Absatz 1.2) bestimmt ¹⁷. Eine Veränderung des Rhodopsin Absorptionsmaximums kann folglich durch die Veränderung des Energieniveaus des Grundzustands bzw. des angeregten Zustands herbeigeführt werden. Da langwelliges Licht tiefer in Gewebe einzudringen vermag, sind vor allem rot-absorbierende Rhodopsinen von zentrale Bedeutung für optogenetische Anwendungen⁶⁹. Darüber hinaus erlauben blauabsorbierende Rhodopsin Varianten eine Kombination mit grün oder rot-absorbierenden Photorezeptoren, Fluorophoren oder Ca²⁺-/Spannungs-/2nd-messenger Sensoren. Beispiele für Rhodopsine deren Absorptionsmaximum zu kürzeren Wellenlängen verschoben wurden, sind die Kanalrhodopsin Variante ChR1ChR2 T198G/G202A mit einem Δλ_{max} von ~20 nm und die Variante M128A/G132V/A225T der Arch3 (AR3) Protonenpumpe mit einem $\Delta\lambda_{max}$ von ~100 nm¹⁹⁹. Bei beiden Mutanten verursachten die eingeführten Mutationen eine Rotation der C6-C7 Bindung des Chromophors und damit des β -Ionon Rings. Dies vergrößerte die Energiedifferenz des π - π^* Übergangs. Eine zusätzliche elektrostatische Stabilisierung der RSBH⁺ durch A255T unterstützte die Blau-Verschiebung des Absorptionsmaximums bei AR3. Um kurzwellig absorbierende Varianten von BeRhGC zu generieren wurden in Anlehnung an Kato et al. die entsprechenden Aminosäuren mutiert und die Funktionalität der Varianten mittels TEVC getestet. Hierbei entsprachen die T198G/G202A Positionen in C1C2 L286G/G290A bei BeRhGC (Sequenz- Vergleich Abb. 10). Für diese Variante konnte jedoch erst nach 10-facher

Erhöhung der cRNA Menge Licht-induzierte Einwärtsströme detektiert werden. Vergleichbar zum wt wurde das Absorptionsmaximum bei ~560 nm bestimmt (Daten nicht gezeigt). In Anlehnung an die AR3 Trippelmutante ¹⁹⁹ wurde die BeRhGC Variante mit L286A/G290V/A383T generiert, die auch nach erhöhter cRNA Injektion (19.5 ng) keine Licht-induzierten Einwärtsströme (CNG-A2) zeigte. Die TEVC Messungen wurden von Rodrigo Fernandez im Zuge seiner Masterarbeit durchgeführt.

Neben dieser Mutationsstrategie wurden kürzlich BeRhGC Varianten mit veränderten spektralen Eigenschaften ²⁷ veröffentlicht, bei denen basierend auf vorherigen Bacteriorhodopsin Arbeiten ^{200,201} die Gegenionen der RSB mutiert wurden ²⁷. Im Vergleich zu wtBeRhGC ($\lambda_{max} = 527$ nm) wurde bei E254D das Absorptionsmaximum bei 490 nm festgestellt. Für D380N lag das Absorptionsmaximum bei 506 nm, während für D380E eine Rot-Verschiebung mit $\lambda_{max} = 533$ nm gemessen werden konnte. Jedoch, ging mit den veränderten Spektraleigenschaften eine verminderte Enzymaktivität einher: Relativ zum Wildtyp (100 %) betrug die Licht-abhängige enzymatische Aktivität für E254D: 17 %, für D380N 9.3 % und für D380E 43%. In Anlehnung an Trieu et al ²⁷ wurden die Aminosäuren der Gegenion-Positionen bei CaRhGC (Absatz 2.4.7) mutiert.

2.3.8 Anwendung des Volllängen BeRhGC in CHO-K1 Zellen

Nach der biochemischen und biophysikalischen Charakterisierung von BeRhGC stellte sich die Frage, ob BeRhGC in Säugetier-Zellen angewendet werden kann, um Licht-abhängig die Synthese von cGMP zu steuern. Um dies zu klären, wurde BeRhGC in eine modifizierte CHO-K1 Zelllinie stabil transfiziert, die den bovinen cGMP-sensitive CNG-A2 Kanal ($K_{1/2(cAMP)}$ = 14 μ M, $K_{1/2(cGMP)}$ = 0.7 μ M) konstitutiv exprimierte. Vergleichbar mit den elektrophysiologischen Experimenten aus Oocyten öffnet cGMP den CNG Kanal. Der Einstrom von Ca²⁺ Ionen kann durch fluoreszierenden Sensoren (Fura-2 und Fluo-4) nachgewiesen werden ²⁰². Nach Aussaat der transfizierten CHO-K1 Zellen in eine 96-Well Multiplatte und Zugabe des Fluo-4 Sensors wurden einzelne Wells über 50 s mit einer unterschiedlichen Anzahl an 485 nm Lichtblitzen belichtet. Eine Erhöhung der Blitzfrequenz führte zu einer Zunahme der Ca²⁺ abhängigen Fluoreszenz (Abb. 24a), die für Kontrollzellen ausblieb. Weiterhin konnten die Zellen wiederholt stimuliert werden (Abb. 24b). Diese Experimente zeigen, dass BeRhGC als optogenetisches Werkzeug in CHO Zellen angewendet werden.

Abb. 24 Anwendung von BeRhGC in CHO-K1 Zellen

BeRhGC wurde stabil in eine modifizierte CHO-K1 Zelllinie transfiziert, die den CNG-A2 Kanal (*Bos taurus*) exprimierte. Eine cGMP-abhängige Öffnung des CNG-A2 Kanals wurde durch fluoreszierende Ca²⁺-Sensoren (Fluo-4, Fura-2) nachgewiesen. (**a**) Fluo-4 Fluoreszenz-Signal nach Belichtung der BeRhGC-exprimierenden Zellen durch den Multi-Plate-Reader über 50 s mit einer ansteigenden Anzahl an 485 nm Lichtblitzen (1.3 mW mm⁻², schwarz-gestrichelter Balken). Die rote Spur zeigt Kontrollzellen, die kein BeRhGC exprimierten. (**b**) Fura-2 Fluoreszenz-Signal nach wiederholter Stimulation der BeRhGC-transfizierten CHO-K1 Zellen mithilfe von Weißlicht (schwarze Pfeile, 15 s, 1.3 μ W mm⁻²). Die dargestellten Werte beruhen auf Triplikat-Messungen und sind repräsentativ für mindestens 2 unabhängige Experimente. RFU = Relative Fluoreszenz Units. Modifizierte Abbildung aus Scheib et al.¹⁹³, die Daten wurden von Heinz Körschen (Caesar, Bonn) erhoben.

2.3.9 Anwendung von BeRhGC in hippokampalen Rattenneuronen

Nach erfolgreicher Applikation von BeRhGC in CHO-K1 Zellen wurde die Anwendbarkeit von BeRhGC in hippokampalen Neuronen aus der Ratte getestet. Dazu wurden die Neurone mit BeRhGC, dem Fluoreszenzmarker mKate2 und dem cGMP-sensitiven Reporterkanal CNG-A2 transfiziert (Abb. 25a). Die BeRhGC/CNG-A2 exprimierenden Zellen zeigten eine typische Funktionsweise nach Applikation somatischer Ströme (Abb. 25b-c). Vergleichbar zu den vorherigen elektrophysiologischen Experimenten an Oocyten aktivierte grünes Licht BeRhGC und führte zu einer cGMP-vermittelten Öffnung der CNG Kanäle. Die Ioneneinströme wurden mithilfe der Ganzzell Voltage-Clamp Methode detektiert. BeRhGC Zellen ohne den zusätzlichen CNG-A2 Kanal zeigten keine Photoströme (Abb. 25d). Anstatt dessen waren schnelle Einströme beobachtbar, die auf spontane synaptische Transmissionen zurückzuführen wurden. Darüber hinaus konnten BeRhGC/CNG-A2 Zellen über einen Zeitraum von >16 s ohne Signalverlust mehrfach stimuliert werden (Abb. 25e). Eine Verlängerung der Belichtungszeit (10 ms - 10 s) bei sättigender Lichtintensität (19.2 mW mm⁻²) korrelierte mit einer Zunahme der Photostrom-Amplitude (Abb. 25f). Eine Analyse der Strommkennkurve nach 100 ms Belichtung erlaubte es, den Signalbeginn nach 99 ms festzustellen (Abb. 25g).

(a) Fluoreszenz-Aufnahme transfizierter CA1 Neuronen einer hippokampalen Schnittkultur, 10 Tage nach Elektroporation mit BeRhGC und dem Fluorophor mKate2. (b-c) Die Membran-Antwort auf somatische Ströme (-400 - 400 pA) zweier CA1 Neuronen, die mit BeRhGC und dem cGMP-sensitiven Reporterkanal CNG-A2 transfiziert wurden, zeigte die normale Funktionsweise der transfizierten Neuronen. (d) Photoströme von CA1 Neuronen transfiziert mit BeRhGC alleine (schwarz) oder mit BeRhGC und dem cGMP-sensitiven CNG-A2 Kanal (rot), nach 10 s Belichtung mit 530 nm (19.2 mW mm⁻²). Die Photoströme wurden bei einer Haltespannung von -65 mV mittels der Ganzzell-Patch-Clamp Technik aufgenommen. Die spontanen synaptischen Einströme waren bei BeRhGC Neuronen nicht geblockt. (e) Wiederholte Stimulation (0.2 Hz) von BeRhGC/CNG-A2 Neuronen durch kurze Lichtpulse (100 ms, 530 nm, 1 mW mm⁻²), die Stromkennkurven sind repräsentativ für 3 Neurone. (f) Repräsentative Photoströme von BeRhGC/CNG-A2 Neuronen (n = 7), die unterschiedlich lang belichtet wurden (10 ms - 10 s, 530 nm, 19.2 mW mm⁻²). (g) Vergrößerung der *Region aus (f) verdeutlicht die Anfangsphase der Photoströme nach 100 ms, 300 ms, und 1 s Belichtung. Modifizierte Abbildung aus Scheib et al ¹⁹³, basierend auf den Daten von Christine Gee (UKE Hamburg).

Zusammenfassend für diesen Abschnitt belegen alle bisherigen Experimente die Funktionsweise von BeRhGC, die als Rhodopsin-aktivierte Guanylylzyklase agiert und nach Grünbelichtung spezifisch cGMP bildet. Ferner konnte die Anwendbarkeit von BeRhGC als optogenetisches Werkzeug zur Kontrolle von cGMP-abhängigen Signalwegen in verschiedenen Säugetierzellen gezeigt werden. Der Großteil der hier dargestellten Daten wurde 2015 veröffentlicht ¹⁹³. Parallel erschienen Publikationen ^{26,27,194} bestätigten die geringe Dunkelaktivität, Substrat-Spezifität, sowie die optogenetische Anwendbarkeit von BeRhGC.

2.4 CaRhGC Charakterisierung

Basierend auf der elektrophysiologischen Anfangscharakterisierung (Abb. 11) konnte neben BeRhGC die Rhodopsin-Guanylylzyklase von *Catenaria anguillulae*, CaRhGC, als interessanter Kandidat für optogenetische Anwendungen identifiziert werden. Im Folgenden wurde CaRhGC einer detaillierten biochemischen und biophysikalischen Analyse unterzogen.

Der Aufbau von CaRhGC entspricht dem von BeRhGC und umfasst eine N'-terminale Extension mit 2 vorhergesagten Helices (Helix -1,0), eine mikrobielle Rhodopsin Sequenz, einen Coiled-Coil Linker und eine Typ III Guanylylzyklase. Die Sequenzähnlichkeit zu BeRhGC ist hoch und beträgt 77 % (Abb. 26). Bei beiden RhGCs sind die ersten 68 Aminosäuren des N'-Terminus beinahe identisch. Weiterhin liegt eine hohe Sequenzidentität in der Coiled-Coil & Guanylylzyklase Domäne vor (93 % Sequenzidentität, 442-626 AS). Die größten Sequenz-Unterschiede befinden sich in der N'-terminalen Extension zwischen den Aminosäuren 72 - 170. Obgleich viele Serine zwischen AS 104 - 122 bei CaRhGC vorkommen, liegen die auffälligen Ser-Gly Wiederholungen von BeRhGC bei CaRhGC nicht vor. Darüber hinaus zeigt eine Analyse des CaRhGC N'-Terminus (Anhang Tabelle 13) eine hohe Coiled-Coil Wahrscheinlichkeit für Helix -1, die bei BeRhGC nicht vorliegt (Anhang Tabelle 14).

Der paarweise Vergleich beruht auf den Sequenzen von RhGC aus *Catenaria anguillulae* (CaRhGC, gb: MF939579) und RhGC aus *Blastocladiella emersonii* (BeRhGC, gb: AIC07007.1) und wurde mithilfe von Emboss Needle 6.6.0 (Gap Penalty 15) erstellt. Identische Aminosäuren sind dunkelblau schattiert, Unterschiede sind hellblau unterlegt. Beide RhGCs bestehen aus drei aufeinanderfolgenden Domänen, der Rhodopsin, der Coiled-Coil und der Guanylylzyklase Domäne (Domänenbeginn laut Avelar et al¹). Die CaRhGC Sekundärstrukturelemente sind unterhalb des Vergleichs gezeigt (Helices in magenta, β -Stränge in grün), die Vorhersage der Sekundarstrukturen (AS 1-442) beruht auf JPred4²⁰³ gemäß Scheib et al¹⁹³. Die Sekundärstrukturelemente innerhalb der Guanylylzyklase beruhen auf der CaAC Kristallstruktur.

2.4.1 Vergleich von CaRhGC und BeRhGC in *Xenopus* Oocyten

Die Licht-abhängige Funktionsweise von CaRhGC wurde in Oocyten untersucht. Wie zuvor bei BeRhGC wurde der Photorezeptor zusammen mit dem cGMP-sensitiven Reporterkanal exprimiert und die cGMP-vermittelte Öffnung der CNG Kanäle elektrophysiologisch (TEVC) detektiert. Im Vergleich zu BeRhGC induzierte Grünbelichtung ~3x vergrößerte Photoströme bei CaRhGC (Abb. 27a-d). Nach Abschalten des Lichts, kehrten die Einwärtsströme zu einem stationären Niveau zurück mit einem τ_{off} von 9.2 ± 1.7 s (n = 8, 0.12 mW mm⁻²). Für Zellen, die CaRhGC alleine oder zusammen mit dem cAMP-sensitiven CNG-A2 Kanal exprimierten waren keine Photoströme induzierbar (Abb. 27a). Somit liegt auch bei CaRhGC eine hohe GTP Substratspezifität vor; eine intrinsischen Pump- oder Kanalaktivität kann ebenfalls ausgeschlossen werden. In Übereinstimmung mit den größeren Photoströmen war für CaRhGC eine ~2.5x vergrößerte Halbwertsbreite des Einwärtsstroms beobachtbar (Abb. 27d). Weiterhin konnte ein frühere Signalbeginn ("onset) und eine verkürzte Zeit bis zum Erreichen des halbmaximalen Signals für CaRhGC im Vergleich zu BeRhGC festgestellt werden (Abb. 27e). Die zwei letztgenannten Parameter lassen auf eine verkürzte Anfangskinetik von CaRhGC verglichen mit BeRhGC rückschließen. Ein Vergleich von Be und CaRhGC unter Nutzung anderer Belichtungsprotokolle (200 ms, 500 ms) bestätigten die zuvor beobachtenden 3 - 10x (Anhang vergrößerte CaRhGC Photoströme Tabelle 18). Zum Vergleich der Expressionsniveaus wurde ein Immunoblot (anti-His) von Be/CaRhGC Oocyten-Membranen angefertigt, der auf eine leicht verminderte Expression von CaRhGC hindeutete (Abb. 27f). Somit konnte eine CaRhGC Überexpression als Ursache für die größeren Photostrom-Amplituden ausgeschlossen werden. Weiterhin korrelierte die Zunahme der CaRhGC Stromamplituden und Anfangssteigungen mit der Lichtintensität und die halbmaximale Sättigung der Stromsteigungen konnte bei $EC_{50} = 0.015$ mW mm⁻² bestimmt werden (Abb. 27g,h). Bei BeRhGC wurde zuvor ein EC₅₀ Wert von 0.028 mW mm⁻² ermittelt. Eine immunhistochemische Untersuchung der CaRhGC Oocyten Lysate mittels ELISA Tests zeigte a) keine cAMP Zunahme und b) einen ~200x cGMP Anstieg (60.2 pmol cGMP/Oocyte) nach Belichtung im Vergleich zu dunkel-adaptierten CaRhGC Zellen, deren cGMP Gehalt auf dem Niveau von nicht-injizierten Kontrollzellen verblieb (Abb. 27i,j). Verglichen mit BeRhGC (18 pmol/Oocyte) war die Licht-induzierte cGMP Zunahme bei CaRhGC ~3x vergrößert. Diese Ergebnisse stimmen mit den elektrophysiologischen Messungen überein und erklären die vergrößerten cGMP-vermittelten Ströme bei CaRhGC (Abb. 27a).

Abb. 27 Vergleich von CaRhGC und BeRhGC in Xenopus Oocyten

Die elektrophysiologischen Messungen wurden mittels TEVC durchgeführt, -40 mV Haltespannung. (a) Repräsentative Einwärtsströme 2 s nach Grünbelichtung (530 ± 9 nm, $0.0127 \text{ mW mm}^{-2}$) von Oocyten (n = 5-11) injiziert mit CaRhGC alleine (graue Spur, 2.5 ng RNA) oder zusammen mit dem cGMP-sensitiven CNG-A2 Kanal (blaue Spur, 5 ng cRNA) bzw. mit dem cAMP-sensitiven CNG-A2 Kanal (dunkelgraue Spur, 5 ng cRNA). Die schwarze Spur zeigt die Photoströme von Oocyten mit BeRhGC (2.5 ng cRNA) und dem cGMPsensitiven CNG-A2 Kanal (5 ng cRNA). (b-e) Analyse der CNG-vermittelten Photoströme aus (a) von Oocyten mit BeRhGC (n = 5) und CaRhGC (n = 8) (2 s, 530 ± 9 nm, 0.0127 mW mm⁻²). Die Anfangsstromsteigungen (c) wurden zwischen 20-80% des max. Einwärtsstrom-Signals bestimmt. (f) Immunoblot (anti-His) von Be/CaRhGC aus Oocyten-Membranen (g) Repräsentative CNG-vermittelte Photoströme von Oocyten mit CaRhGC (n = 4-9) (2 s, 560 ± $60 \text{ nm}, 0.01 - 0.28 \text{ mW mm}^{-2}$). (h) Beruhend auf der Messung aus (g) konnte die halbmaximale Sättigung der Photostrom-Anfangssteigungen mithilfe eines monoexponentiellen Fits bestimmt werden. ELISA Quantifizierung von cGMP (i) oder cAMP (j) aus Oocyten Lysaten nach Dunkel-Inkubation (D) oder Belichtung (L, 5 min, 522 nm, 0.01 mW mm⁻²). Die Werte zeigen die cNMP-Konzentrations-Mittelwerte und den Standardfehler. Zweistichproben-t-Test (unabhängige Stichproben): **P < 0.01, ****P < 0.001, ns = nicht signifikant. Modifizierte und erweiterte Abbildung basierend auf Scheib et al. 2018¹⁸⁷.

2.4.2 Spektroskopische Analyse der aufgereinigten Rhodopsin Domäne (Ca)

Für die Analyse des CaRhGC Photozyklus wurde die isolierte Rhodopsin Domäne (1 - 396 AS) in Insektenzellen exprimiert und in Detergenz (pH 7.5) solubilisiert. Ähnlich zu BeRh lag das Absorptionsmaximum des dunkel adaptieren CaRh bei 540 nm (D₅₄₀, Abb. 28a). Belichtung (30 - 90 s, 530 nm) führte zu einem Rückgang der Absorption bei 530 nm und zu einer Absorptionszunahme bei 380 nm (M₃₈₀-Spezies, Abb. 28a oben). Die maximale Absorption der M₃₈₀-Spezies wurde - wie bei BeRh - auf die deprotonierte RSB zurückgeführt. Im Gegensatz zu BeRh kehrte nach Belichtung ein größerer Anteil der CaRh Photorezeptoren in den Dunkelzustand zurück²⁰⁴. Für eine detaillierte Analyse des Photozyklus wurden Blitzlicht-Photolyse-Experimente (10 ns, 530 nm) an CaRh durchgeführt und Spektren zwischen 350 und 700 nm (100 ns - 10 s nach dem Laser-Flash) aufgenommen (Abb. 28b-c). Durch eine globale Analyse der transienten Absorptionsänderung und den daraus resultierenden Differenzspektren wurden die Absorptions-Maxima/Minima mit den zugehörigen Bildungs- und Zerfalls-Kinetiken abgeleitet. Dies erlaubte die Identifizierung einer frühen rot-verschobenen K-Spezies (K₆₀₀), die mit einem τ-Wert von 0.81 µs zerfiel (die Zeitkonstante der K₆₀₀-Bildung konnte nicht quantifiziert werden, da diese kleiner als die Zeitauflösung des Messsystems war). Im Gegensatz zu BeRh konnten im weiteren Verlauf zwei blau-verschobene Intermediate L1450 und $L2_{450}$ identifizierte werden. $L2_{450}$ zerfiel mit $\tau = 31$ ms zu M_{380} (BeRh: 8 ms, Abb. 13). Des Weiteren kehrte der CaRh M₃₈₀-Zustand langsamer zum Dunkelzustand zurück ($\tau = 571$ ms) als dies für BeRh beobachtet wurde ($\tau \sim 100 \text{ ms}$, Abb. 13).

Der Rhodopsin-typische Photozyklus von CaRh kann somit wie folgt beschrieben werden (Abb. 28d): Grün-Belichtung des Dunkelzustands (D₅₄₀) führt zur Bildung des rot-verschobenen K₆₀₀-Intermediats. Aus den folgenden blau-verschobenen Zuständen L1/L2₅₄₀ bildet sich die deprotonierte M₃₈₀-Spezies, die thermisch mit einem τ von 571 ms zum Dunkelzustand zurückkehrt. Auf die Frage, ob das M₃₈₀-Intermediat dem cGMP bildenden Signalzustand von RhGC zugeordnet werden kann, wird in der Diskussion eingegangen.

Abb. 28 Spektroskopische Analyse der aufgereinigten Rh Domäne von CaRhGC

(a) unten: UV/VIS-Absorptionsspektren des dunkel-adaptierten und belichteten (30-90s) CaRhs in Detergenz (pH 7.5, 505 nm, 0.07 mW mm⁻²). (a) oben: Differenzspektren (Licht-dunkel) nach 30, 60 und 90 s Belichtung. (b-c) Blitzlicht-Photolyse von CaRh (10 ns, 532 nm, 15 mW). (b) Die Differenzspektren (EADS = Evolutionary associated difference spectra) wurden durch einen globalen Fit bestimmt, die zugehörigen Absorptionsmaxima/-minima mit ihren Bildungs-/Zerfallskinetiken ($\tau = 0.81 \ \mu s - 571 \ ms$) wurden ermittelt. (c) Zeitaufgelöste Detektion der Absorptionsänderungen bei spezifischen Wellenlängen nach Belichtung von CaRh (d) schematische Darstellung des Photozyklus von CaRh, auf Einzelheiten wird im Text eingegangen. Modifizierte Abbildung aus Scheib et al. 2018¹⁸⁷ die Daten wurden von Katja Stehfest erhoben.

2.4.3 Enzymatische Aktivität des Volllängen CaRhGC Konstrukts

Für die detaillierte Analyse der Enzymeigenschaften wurde CaRhGC in Insektenzellen exprimiert und mithilfe von Detergenz solubilisiert. Ein anti-His Immunoblot bestätigte die erfolgreiche Aufreinigung des Volllängen Konstrukts und es folgte die in vitro Vermessung der Enzymaktivität (Abb. 29a). Hierbei wurden die lichtbzw. dunkel-abhängigen Anfangsgeschwindigkeiten von CaRhGC gegen die GTP-Konzentration aufgetragen. Die Lichtreaktion folgte einer Michaelis-Menten Kinetik und ein Hill-Fit erlaubt die Bestimmung von v_{max} bei 11.6 ± 5.7 cGMP µmol min⁻¹ mg_{protein}⁻¹ (= 821 ± 400 cGMP µmol min⁻¹ µmol_{protein} ¹), $K_M = 6.1 \pm 5.6$ mM und $k_{cat} = 6.85$ s⁻¹ (Tabelle 1). Im Vergleich zu BeRhGC entsprach dies einer bis zu 6x Zunahme der Enzymgeschwindigkeit (Tabelle 1). Im Dunkeln war die cGMP Aktivität im Mittel ~5x verringert verglichen mit der CaRhGC Lichtreaktion (Dunkelwerte subtrahiert) und die Dunkelaktivität folgte einer linearen Abhängigkeit. Bei den vorherigen Oocyten ELISA Experimenten (Abb. 27i) war dieses Licht-zu-Dunkel-Verhältnis ~20x größer. Dies weist - wie bei BeRhGC - auf einen destabilisierenden Effekt des Detergenz hin, der die erhöhte CaRhGC Dunkelaktivität verursachen könnte. Darüber hinaus wurde die maximale CaRhGC Aktivität bei pH 7.5 im Beisein von Mn²⁺ und GTP festgestellt, während im Beisein von Ca^{2+} und Mg^{2+} eine minimale/keine cGMP Synthese beobachtet werden konnte (Abb. 29b,c).

Abb. 29 Enzymatische Aktivität des aufgereinigten CaRhGCs

Die Bestimmung der Enzymaktivität basierte auf der cGMP Syntheseleistung, die cGMP Detektion erfolgte mittels Umkehrphasen-HPLC. (a) Michaelis-Menten Enzymkinetik (Licht - Dunkelproben) des aufgereinigten CaRhGCs. Die enzymatischen Anfangsgeschwindigkeiten wurde bei verschiedenen GTP Konzentrationen (0.5 - 10 mM GTP/Mn²⁺, pH 7.5, n=3) unter Belichtung (522 nm, 1 μ W mm⁻², grüne Kurve, Dunkelwerte subtrahiert) oder Dunkelheit (schwarze Kurve) bestimmt. Ein Hill-Fit erlaubte die Bestimmung der enzymatischen Parameter (Tabelle 1). Seitlich: Der anti-His Immunoblot von CaRhGC (71 kDa). (b) pH Abhängigkeit von CaRhGC (5 min, 522 nm, 1 μ W mm⁻², 1 mM GTP/Mn²⁺), die Daten zeigen die detektierten cGMP Peak-Flächen (mAU*min) pro mg Protein. (c) CaRhGC Abhängigkeit von verschiedenen divalenten Ionen (1 mM, 1 mM GTP, 5 min 522 nm, 1 μ W mm⁻²). Die Daten wurden in Zusammenarbeit mit Shatanik Mukherjee und Katja Stehfest generiert. Modifizierte und erweiterte Abbildung basierend auf Scheib et al. 2018¹⁸⁷.

2.4.4 Enzymatische Aktivität der isolierten CaGC Domäne

Neben dem Volllängen CaRhGC Konstrukt wurde die isolierte Guanylylzyklase, CaGC, in *E.coli* exprimiert und aufgereinigt (Abb. 30a). Das Vorgehen entsprach hierbei dem von BeGC (Abb. 15, Abb. 16); CaGC zeigte ebenfalls ein monomeres Elutionsprofil bei der Gelfiltration (vgl. Abb. 16). Wie zuvor bei BeGC konnte auch für CaGC eine konstitutive Enzymaktivität festgestellt werden (Abb. 30a) und die enzymatische Aktivität von CaGC übertraf die von BeGC (Tabelle 1). Die Substrataffinität von CaGC ($K_M = 5.78$ mM) war gegenüber BeGC verringert. Verglichen mit dem belichteten Volllängen Konstrukt CaRhGC war für die isolierte Zyklase ein kleinerer Substratumsatz beobachtbar (CaGC: $v_{max} = 135$ cGMP µmol min⁻¹ µmol_{protein}⁻¹ und k_{cat} = 1.13 s⁻¹ (Tabelle 1). Das pH-Optimum von CaGC lag bei pH = 8 und wie zuvor konnte Mn²⁺ als elementarer Cofaktor für die Bildung von cGMP (Abb. 30b,c) identifiziert werden. Die Kopräsenz von Ca²⁺/Mg²⁺ mit Mn²⁺ führte zu einer Zunahme der Enzymaktivität, während nach ATP Zugabe keine Zunahme an cAMP feststellbar war (Abb. 30c). Ferner konnte die CaGC vermittelte cGMP Synthese durch die GTP Analoga Guanosin-5'-(α -thio)-triphosphat (GTP α S, jeweils Rp und Sp) und Guanosin-5'-[(α , β)-methylen]triphosphat (GPCPP) inhibiert werden (Abb. 30c).

Abb. 30 Enzymatische Aktivität der isolierten CaGC Domäne

(a) Michaelis-Menten Enzymkinetik von CaGC; die enzymatischen Anfangsgeschwindigkeiten wurde bei verschiedenen GTP Konzentrationen ($0.2 - 7 \text{ mM GTP/Mn}^{2+}$, pH 7.5, n=3) bestimmt. Ein Hill-Fit erlaubte die Ableitung der enzymatischen Parameter (Tabelle 1). Seitlich eingefügt: Das SDS Gel der aufgereinigten CaGC (21.5 kDa). (b) pH Abhängigkeit der CaGC Aktivität (5 min, 1 mM GTP/Mn²⁺), die Daten zeigen die cGMP Peak-Flächen (mAU*min) pro mg Protein. (c) Abhängigkeit der CaGC Aktivität von unterschiedlichen Substraten und Co-Substraten (5 min, pH 7.5). Die 4 rechten Balken zeigen die Inhibition von CaGC durch die GTP-Analoga GPCPP und GTPaS (10 min, pH 7.5). Die Mittelwerte und zugehörigen Standardfehler sind dargestellt. GPCPP = Guanosin-5'-[(α , β)-methylen]triphosphat, GTPaS = Guanosin-5'-(α -thio)-triphosphat. Modifizierte und erweiterte Abbildung basierend auf Scheib et al 2018¹⁸⁷.

-	BaRhGC	CaRhGC	C2GC	BAGC
2	Dennoc	Cannoc	Cauc	DEGC
HillFit R ²	0.98	0.96	0.98	0.99
К _м (mM)	0.92	6.1	5.78	2.16
	+/- 0.27	+/- 5.6	+/- 2.04	+/- 0.30
n	1	1.1	1.22	1.72
	+/- 0.18	+/- 0.4	+/- 0.08	+/- 0.12
V _{max}	1.82	11.6	6.30	1.89
(cGMP(µmol min ⁻¹ mg _{protein} ⁻¹)	+/- 0.19	+/- 5.7	+/- 1.54	+/- 0.18
V _{max}	128.492	821.7	135.59	40.67
(cGMP(µmol min ⁻¹ µmol _{protein} ⁻¹)	+/- 13.41	+/- 400.3	+/- 33.14	+/- 3.87
k _{cat} (min⁻¹)	64.25	410.9	67.80	20.34
k _{cat} (s ⁻¹)	1.1	6.85	1.13	0.34
$k_{cat/KM}$ (s ⁻¹ mM ⁻¹)	1.2	1.12	0.20	0.16
Molekulargewicht (kDa)	70.6	70.6	21.5	21.5
Κ _{D, GTP} (μΜ)			122	84
			+/- 26	+/- 8
K _{D. ATP} (μM)			385	531

Tabelle 1 Enzymatische Parameter von Be/CaRhGC und Be/CaGC

Im Anschluss an die enzymatische Analyse wurden die GTP/ATP-Bindungsaffinitäten bei CaGC gemessen. Die Titration des jeweiligen Nukleotids zu CaGC führte zu einer Abnahme der Trp-Fluoreszenz und erlaubte die Bestimmung des K_D-Werts. Für GTP konnte ähnlich zu BeGC ein K_D Wert von $122 \pm 26 \ \mu M \ (n = 3)$ festgestellt werden. Für ATP konnte wie zuvor eine Bindungsaffinität gemessen werden (K_D = 385 $\ \mu M$), obwohl CaGC ATP nicht umsetzt (Abb. 30c). Dies verdeutlicht wiederum, dass die Substratdiskriminierung nach der initialen Bindung, d.h. während der Katalyse, stattfindet.

2.4.5 Die Bedeutung des N'-Terminus für die CaRhGC Funktion

CaRhGC verfügt wie BeRhGC über einen intrazellulären N'-Terminus¹⁸⁷ und über zwei vorhergesagte N'-terminale Helices (Abb. 26). Im Gegensatz zu BeRhGC liegt eine höhere Coiled-Coil Wahrscheinlichkeit für die vorhergesagte Helix -1 bei CaRhGC vor (Anhang Tabelle 13, Tabelle 14).

Um den Einfluss des untypischen N'-Terminus zu untersuchen wurden - wie zuvor bei BeRhGC - verkürzte N'-terminale CaRhGC Varianten erstellt, die elektrophysiologisch und immunhistochemisch in *Xenopus* Oocyten analysiert wurden. Bei BeRhGC führte eine Verkürzung der ersten 42 Aminosäuren zu einem 3-fachen Aktivitätszuwachs. In Übereinstimmung mit diesem Ergebnis konnte auch bei tr43CaRhGC eine 2.6-fach vergrößerte Photostrom-Amplitude gegenüber dem wt bei TEVC Messungen festgestellt werden (Abb. 31ae). Gleichsam konnte für die tr43CaRhGC Photoströme steilere Anfangssteigungen (-3.92 nA/ms versus wt -1.72 nA/ms) und ein früheres Einsetzten der Signale ("onset" 403 ms) im Vergleich zum wt beobachtet werden (Abb. 31a-e). Einhergehend mit einer größeren Stromamplitude wurde für tr43 eine verlangsamte Rückkehr zur Basislinie detektiert (14192 ms, versus wt: 7118 ms). Weitere Vergleichs-Messungen mit anderen Belichtungsprotokollen sind dem Anhang (Tabelle 19) beigefügt.

Im Anschluss an die TEVC Experimente wurden die intrazelluläre cGMP Menge in Oocyten mittels ELISA quantifiziert. Wie bei BeRhGC konnte eine Aktivitätssteigerung von tr43 gegenüber wtCaRhGC festgestellt werden (Abb. 31f). Zudem beeinflusste das Abschneiden der ersten 42 Aminosäuren die GTP-Selektivität nicht (Abb. 31g) und die cAMP-Konzentration verblieb - auch nach Belichtung - auf dem Niveau von nicht-injizierten Kontrollzellen (Abb. 27, cAMP $1.08 \pm 0.05 \text{ pmol/}\mu\text{l}$).

Abb. 31 Elektrophysiologische und immunhistochemische Charakterisierung von tr43CaRhGC in *Xenopus* Oocyten

Die elektrophysiologischen TEVC Messungen wurden bei -40 mV Haltespannung durchgeführt, 3 Tage nach der cRNA Injektion: 2.5 ng cRNA tr43/wtCaRhGC & 5 ng cRNA des cGMP sensitiven Reporterkanals CNG-A2(cGMP) (a) Repräsentative Einwärtsströme 500 ms nach Grünbelichtung (530 ± 9 nm, 0.0127 mW mm⁻²) von Oocyten, die CNG-A2(cGMP) zusammen mit wtCaRhGC (schwarze Spur, n=9), oder tr43 (orange Spur, n=7) exprimierten, bzw. tr43CaRhGC alleine exprimierten (graue Spur, n=4). (b-e) Vergleich der Photostrom-Parameter von wt und tr43CaRhGC aus (a). (f-g) 5 Tage nach Injektion (10 ng cRNA der angegebenen Konstrukte) wurde der intrazelluläre Gehalt an cGMP (f) bzw. cAMP (g) in dunkel-adaptierte Oocyten (D) oder grün-belichtete Oocyten (L) (5 min, 522 nm, 0.01 mW mm⁻²) mithilfe eines ELISA Tests quantifiziert. Die Mittelwerte und zugehörigen Standardfehler sind dargestellt, Zweistichproben-t-test: *P < 0.05, **P < 0.01, n.s. = nicht signifikant, CNG = Cyclic Nucleotide Gated Channel, CaRhGC = Rhodopsin-Guanylylzyklase aus *C. anguillulae*, wt = wildtyp, tr = truncated (verkürzt)

Neben dem Abschneiden der ersten 42 Aminosäuren wurde eine tr179 Variante erstellt. Diese vollständige Entfernung des Rhodopsin-untypischen N'-Terminus inaktivierte CaRhGC gänzlich und CNG-A2 vermittelte Photoströme waren elektrophysiologisch nicht mehr nachweisbar. Das Ausbleiben einer Licht-induzierten cGMP Akkumulation konnte ferner in ELISA Analysen von Oocyten Lysaten bestätigt werden (0.16 ± 0.02 pmol cGMP/Oocyte).
2.4.6 Modifikation der CaRhGC Kinetik

Wie bereits erwähnt, sind vor allem DC-Paar mutierte Kanalrhodopsine, die sich durch verlängerte Signalzuständen auszeichnen, von zentraler Bedeutung für optogenetische Anwendungen⁶⁹. Der Sequenz-Vergleich in Abb. 10 zeigt, dass auch CaRhGC über das DC-Paar verfügt. Die Mutation C259T führte bei CaRhGC ebenfalls zu einer verlangsamten Rückkehrkinetik in elektrophysiologischen Messungen an Oocyten (Daten nicht gezeigt). Aufgrund schlecht messbarer Zellen war eine detaillierte Quantifizierung der elektrophysiologischen Parameter nicht möglich.

2.4.7 Modifikation der spektralen Eigenschaften von CaRhGC

Neben der Veränderung der kinetischen Eigenschaften, stehen spektrale Veränderungen im Vordergrund des anwendungsorientierten Designs Rhodopsin-basierter Photorezeptoren⁶⁹. In Anlehnung an Trieu et al ²⁷ (siehe Abschnitt 2.3.7) wurden wie bei BeRhGC die Aminosäuren der Gegenion-Positionen bei CaRhGC mutiert (E254D und D380N). Oocyten, die diese Konstrukte exprimierten, waren jedoch nicht messbar und von einer weiteren Charackteriserung dieser Varianten wurde in der Folge abgesehen.

2.4.8 Veränderung des CaRhGC Linkers, Design von RhGC Chimären

Um Einblicke in die interne Signalweiterleitung bei RhGCs zu gewinnen, wurde das CaRhGC Linker Segment, 392-442 AA einer detaillierten Analyse unterzogen. Eine Untersuchung mittels des Webtools COILS²⁰⁵ bestätigte ein Heptadenmusters mit vornehmlich hydrophoben Aminosäuren an der Position a und d, das voraussetzend für eine Coiled-Coil Struktur ist (Abb. 32, die Vorhersagedetails sind im Anhang Tabelle 15 festgehalten). Entfernung bestimmter Aminosäuren in diesem Bereich (rot hervorgehoben in Abb. 32), führte im Fall von N401(delN401) und L414 (del414) zu inaktiven Konstrukten bei TEVC Messungen. Dahingegen erlaubte eine Modifikation unter Erhalt des Heptadenmusters (C421A), CNG-A2 vermittelte Photoströme zu messen (Daten nicht gezeigt). Dies weist darauf hin, dass der Linker eine helikale Coiled-Coil Helix ausbildet, die wie bei Photoaktivierten Adenylat Zyklasen wichtig für die Signalweiterleitung ist^{168,175}.

CaRhGC 392-442 EQAQNQKVEAITAIAEELESQITNCDAILQKMMPEGVLEQLKNGQA bcdefgabcdefgabcdefgabcd

BeRhGC 392-442 EQAQNQKVDAITAIAEELENQINNCDAILQKMMPEGVLEQLKNGQA bcdefgabcdefgabcdefgabcde

Abb. 32 Analyse der Linker-Sequenzen von Ca/BeRhGC

Das Heptadenmuster (a-g) unterhalb der Linker-Sequenz (AS 392 - 442) basiert auf der Coiled-Coil Vorhersage (Wahrscheinlichkeit >0.9, Anhang Tabelle 15). Rot hervorgehobene Aminosäuren wurden entfernt oder substituiert.

Im Anschluss an die Coiled-Coil Helix kann ein Zyklase Transducer Element (CTE) bei RhGCs und PACs identifiziert werden, das sich durch ein konserviertes zentrales Prolin auszeichnet (P430 in Ca/BeRhGC, Abb. 8, Abb. 33a). Wie aus der bPAC Kristallstruktur ersichtlich, teilt dieses Prolin (magenta Abb. 33b) das CTE Element in zwei helikale Bereiche. Während der N'terminale Bereich eine Verlängerung der Coiled-Coil Helix darstellt, entsteht eine kurze Knick-Helix nach dem Prolin, die über eine Schleife in den ersten β-Strang der Guanylylzyklase mündet. Mutation dieses Prolins (P430A) oder dessen Deletion (delP430) inaktivierte CaRhGC in TEVC-Messungen. Die Inaktivität der P430-mutierten Konstrukte konnte mittels eines cGMP ELISAs bestätigt werden (Abb. 33c). Der Aktivitätsverlust begründet sich nicht durch eine fehlende Expression, da eine entsprechende Proteinbande in einem Immunoblot nachgewiesen werden konnte (Abb. 33d). Somit verdeutlichen diese Experimente die Bedeutung des CTEs für die Signalweiterleitung.

Basierend auf dem Sequenz-Vergleich in Abb. 33a wurden Chimären zwischen CaRhGC und den Photoaktivierten Zyklasen, bPAC und OaPAC, gebildet. Hierbei diente die Rhodopsin Domäne und Coiled-Coil Helix von Catenaria als Photorezeptor und Signaltransmitter. Als Effektordomäen wurde die Zyklase von bPAC oder OaPAC an den CaRhCC Teil fusioniert. Für den Chimären-Übergangspunkt wurde das konservierte Prolin (P430 in CaRhGC) gewählt. Im Gegensatz zu den konstitutiv aktiven Be/CaGCs ist die isolierte AC von bPAC nicht konstitutiv aktiv¹⁷⁵. Die Expression und Vermessung der Chimären in Oocyten mittels TEVC zeigte, dass (cAMP)CNG-vermittelte Photoströme in keinem Fall induziert werden konnten. Überraschenderweise wurde bei der Chimäre CaRhCC-(AC)_{bPAC} Licht-unabhängig eine deutlich erhöhte cAMP Konzentration in Oocyten-Lysaten festgestellt (Abb. 33d). Die cAMP Menge der Dunkel- und Licht-adaptierte Proben überschritt hierbei das ELISA Detektionslimit. Weitere Analysen werden zeigen, ob die CaRhCC-(AC)_{bPAC} Signalweiterleitung noch intakt ist und Belichtung zu einer erhöhte cAMP Synthese führt.

Abb. 33 Charakterisierung der P430 Mutanten und CaRhGC Chimären

(a) Sequenzvergleich verschiedener Adenylyl und Guanylylzyklasen, inklusive Ca/BeGC. Der Stern (*) und der Unterstrich kennzeichnen das konservierte Prolin des CTEs. (b) Kristallstruktur des belichteten homodimerisierten bPACs (PDB: 5MBE). Prolin (magenta) induziert einen Knick im CTE Motiv (Kreis). (c) Intrazelluläre Quantifizierung von cGMP mittels ELISA nach Expression der angegebenen Konstrukte in Oocyten, die im Dunkeln inkubiert oder belichtet wurden (5 min, 522 nm, 0.010 mW mm⁻²). (d) Immunoblot der Oocyten Membranen nach Expression der P430A, delP430 und wtCaRhGC Konstrukte (e) Intrazelluläre Quantifizierung von cAMP mittels ELISA nach Expression der belichtet wurden (522 nm, 0.01 mW mm⁻²). Die cAMP Konzentration bei CaRhCC-(AC)_{bPAC} befanden sich über der Assay-Nachweisgrenze. CTE = Zyklase Transducer Element

Bei einer zweiten Design-Strategie wurde von CaRhGC nur der CaRh Teil übernommen (bis AS 404) und die Chimäre mit der Coiled-Coil Helix und der AC von bPAC (AS 105-349) fortgeführt. Licht-induzierte Ströme konnten jedoch auch bei dieser Chimäre, CaRh-(CC-AC)_{bPAC}, nicht induziert werden. Eine intrazelluläre Quantifizierung von cAMP wird zeigen, ob das Konstrukt tatsächlich über keine cAMP Aktivität verfügt. Im Gegensatz zu RhGCs konnte keine Coiled-Coil Helix im Linker Bereich dieser Chimäre vorhergesagt werden. Ob dies ein Grund für die Inaktivität der Chimäre ist, ist derzeit noch unklar.

2.4.9 Anwendung von CaRhGC in hippokampalen Rattenneuronen

Im Folgenden wurde die Anwendbarkeit von CaRhGC in hippokampalen Rattenneuronen (CA1) getestet und die elektrophysiologischen Eigenschaften von CaRhGC, YFP-CaRhGC und BeRhGC verglichen. Neurone, die mittels Elektroporation mit CaRhGC und dem cGMP sensitiven Reporterkanal CNG-A2¹⁹⁰ transfiziert wurden (Abb. 34a,b), zeigten eine typische Membran-Antwort nach Applikation somatischer Ströme (Abb. 34c oben). Illumination dieser Neurone mit grünem Licht führte in Ganzzell Voltage-Clamp Experimenten zu CNG-A2(cGMP) vermittelten einwärtsgerichteten Strömen, die ohne Signalverlust durch Grünlicht wiederholt ausgelöst werden konnten (Abb. 34c unten). Ein Vergleich von BeRhGC und CaRhGC zeigte zwar vergrößerte, jedoch nicht signifikant unterschiedliche Medianwerte der CaRhGC Photostrom-Amplituden (Tabelle 2, Abb. 34d,e). Ferner konnte ein früheres (~5x) Einsetzen der CaRhGC Photoströme ("time to onset") gegenüber BeRhGC und vergrößerte Photostrom-Anfangssteigungen bei CaRhGC festgestellt werden (Tabelle 2, Abb. 34f). Das Anfügen eines YFP-tags hatte keinen Einfluss auf die CaRhGC Photostrom-Amplituden/-Kinetiken (Abb. 34e,f). Jedoch konnten ohne den YFP-tag nur in 30 % der CaRhGC exprimierenden Neuronen Photoströme induziert werden. Darüber hinaus bestätigte sich auch in diesen elektrophysiologischen Experimenten die GTP Substrat-Spezifität bei CaRhGC. Die Co-Expression des cAMP sensitiven CNG-A2 Kanals (C460W/E583M)¹⁹⁰ induzierte dahingegen keine Photoströme (Abb. 34d,e). Dies zeigte zudem, dass CaRhGC - wie zuvor BeRhGC- über keine eigene Pump-/Kanal-Aktivität verfügt. Mit zunehmender Lichtintensität war ein Anstieg der Photostrom-Amplituden und Photostrom-Anfangssteigungen bei YFP-CaRhGC messbar und eine Lichtintensität von 0.72 mW mm⁻² (EC₅₀ Wert) führte zu einer halbmaximalen Sättigung des Signals (Abb. 34g,h). Für BeRhGC wurde zuvor ein EC₅₀ Wert von 1.57 mW mm⁻² in hippokampalen Neuronen ermittelt ¹⁹³. Zusammengefasst zeigen die Ergebnisse, dass CaRhGC wie BeRhGC als optogenetisches Werkzeug eingesetzt werden kann, um cGMPabhängige Signalwege mit Licht zu modulieren.

Abb. 34 Elektrophysiologische Vergleich von CaRhGC und BeRhGC in hippokampalen Rattenneuronen

Die Messung der Photoströme erfolgte mithilfe der Ganzzell Patch-Clamp Methode. Für die Elektroporation der Neurone wurden folgende DNA-Konzentrationen verwendet: 10 ng/µl der RhGCs, 25 ng/µl CNG Kanäle und 5 ng/µl mtSapphire. (a,b) Confokale Mikroskopie von Neuronen, die YFP-CaRhGC und mt-Sapphire exprimierten. (a) Anregung des mt-Sapphires (405 nm) (b) Anregung des YFPs (515 nm), Skalierung 10 μ M. (c) oben: Typische Membran-Antwort auf somatische Ströme (-400 - 400 pA, 100 pA Intervalle) eines transfizierten Neurons (YFP-CaRhGC/CNG). Unten: Stromkennkurven dieses Neurons, nach wiederholter Applikation von Lichtimpulsen (100 ms, 530 nm, 0.3 mW mm⁻², Intervall 40s). (d) Repräsentative Photoströme von Neuronen, die CaRhGC/YFP-CaRhGC/BeRhGC und den cGMP sensitiven CNG-A2 oder den cAMP sensitiven CNG-A2 (C460W/E583M) Kanal exprimierten (2 s, 530 nm, 27.3 mW mm⁻²) (e) Analyse der Peak-Amplituden (p)/stationären Amplituden (s) der 4, 17, 17, 6, 13, 13, 7, *** p = 0.0001, ** p = 0.009 Mann-Whitney Test. (f) Analyse der individuellen Photostrom-Anfangssteigungen der CNG(cGMP)-vermittelten Photoströme aus (d). Medianwerte und Interquartil-Bereiche, n = 12, 17, 12. (g) Repräsentative Photoströme eines Neurons transfiziert mit YFP-CaRhGC/CNG(cGMP) nach Applikation unterschiedlicher Lichtintensitäten. (h) Bestimmung der habmaximalen Sättigung der Photostrom-Anfangssteigungen basierend auf (g), n = 17. Die Abbildung beruht auf Scheib et al. 2018 187 , die Daten wurden von Oana Constantin und Christine Gee (UKE Hamburg) erhoben. Ca/BeRhGC = Rhodopsin-Guanylylzyklase von C. anguillulae/B. emersonii, CNG = Cyclic nucleotide gated channel

	CaRhGC/	BeRhGC/	p -Wert (Mann-Whitney Test; * p
	CNG-A2	CNG-A2	≤ 0.05, *** p < 0.001
Photostrom-Amplituden	-1.3 nA	-0.6 pA	p = 0.09
Photostrom-Beginn	23 ms	120 ms	p < 0.0001
("time to onset")			
Photostrom-	-7.2 pA/ms	-2.2 pA/ms	p = 0.045
Anfangssteigungen			

Tabelle 2 Vergleich der Ca/BeRhGC Photoströme (Medianwerte) in Neuronen

2.5 Verkürzte RhGCs aus Chytridiomycota

Neben den fünf RhGCs aus *Blastocladiomycota* wurden vier neue RhGCs in der "Jgi" Datenbank für mikrobielle Genome und Mikrobiome bei verwandten *Chytridiomycota* (*Rhizoclosmatium globosum* (Rg) und *Globomyces pollinis-pini* (Gp)) gefunden (Anhang Abb. 50). Bei diesen multimodularen RhGCs ist der untypische N'-Terminus im Vergleich zu den RhGCs aus *Blastocladiomycota* um ca. 100 Aminosäuren verkürzt. Helix - 1 kann, mit Ausnahme von GpRhGC, mithilfe des Webtools Yaspin bei diesen RhGCs vorhergesagt werden. Eine Coiled-Coil Struktur ist in diesem Bereich ebenfalls wahrscheinlich (Ausnahme GpRhGC, Rg847233). Bezüglich der Rhodopsin/CC/CTE/Zyklase Segmente herrscht weitgehende Sequenzhomologie zu den RhGCs aus *Blastocladiomycota* vor (Anhang Abb. 50) und funktional wichtige Reste sind konserviert (Ausnahme zweites Gegenion und D/C bei RgRhGC847233). Eine elektrophysiologische Untersuchung mittels TEVC zeigte, dass keine Photoströme bei den verkürzten RhGCs induziert werden konnten. Basierend auf Immunoblots konnte dies auf eine fehlende Expression der verkürzten RhGCs zurückgeführt werden (persönliche Kommunikation Rodrigo Fernandez).

2.6 Mutation der Rhodopsin-Guanylylzyklasen zu Rhodopsin-Adenylylzyklasen

Zusammen mit cGMP ist cAMP ein essentieller Zellbotenstoff für eine Vielzahl physiologischer Prozessen wie z.B.: der Genexpression, des Metabolismus oder der neuronalen Plastizität^{8–12}. Um cAMP Spiegel mit Licht zu modulieren, wird derzeit hauptsächlich auf die BLUFabhängige photoaktivierte Adenylat Zyklase aus Beggiatoa, bPAC, zurückgegriffen 167,169,170,179,180 . Jedoch können der langsame Photozyklus ($\tau_{\rm off} \sim 15~s)$ und die bPAC Dunkelaktivität einschränkend bei optogenetischen Anwendungen sein ¹⁸⁷. Mit dem Ziel Alternativwerkzeuge zur optischen cAMP Kontrolle zu generieren, wurde im Folgenden die RhGC Substratspezifität von GTP auf ATP verändert. Mithilfe eines Sequenz-Vergleichs wurden dazu die Aminosäuren identifiziert, die entscheidend für die Diskriminierung von GTP bzw. ATP sind (Abb. 35). Diesbezüglich war bereits von anderen Typ III Nukleotidyl-Zyklasen bekannt, dass 2 Positionen der Substrat-Bindetasche maßgebend für die Substratspezifität sind ¹³⁰. In Adenylylzyklase sind diese Positionen durch ein Lys und Asp Paar (bei Typ IIIb ACs: Lys und Thr Paar) belegt, die die Adeninbase koordinieren (Abb. 35, Anhang Abb. 51). Dies geschieht über Wasserstoffbrücken zwischen Lys und dem N1 des Adenin Pyrimidinrings, sowie zwischen Asp (Thr in IIIb) und der N6 Aminogruppe. In Guanylylzyklasen sind die Positionen durch ein Glu/Cys Paar besetzt (Abb. 35). Obgleich derzeit keine Liganden gebundene wtGC Struktur existiert wird in Anlehnung an ACs angenommen, dass Glu die exozyklische 2-Amino gruppe und das N1 des Pyrimidins der Guaninbase koordiniert, während Cys mit der Guanin C6-Ketorguppe interagiert ^{134,155,156,206}. Entsprechend ihrer Guanylylzyklase Funktion verfügen RhGCs über Glu an Position 497 und Cys an der Position 566. An dieser Stelle, sei nochmals darauf hingewiesen, dass für die Wildtyp Be/CaRhGCs keine cAMP-Produktion nachgewiesen werden konnte (Abb. 12, Abb. 27).

		ME								B ME
RhGC(Be)/443-626	443	TEAKEYESVTVFFSDI	TNETV	SSRTS	Г К	DMMAT		EYDALAK	R W	G V Y K VET I GDA Y L G V
RhGC(Ca)/443-626	443	TEAKEYESVTVEESDI	TNETVI	SSRTS	Г К	DMMAT	LNKLWL	EYDALAK	R W	G V Y K V ET I G D A Y L G V
GC (C.elegans)/442-627	442	- EAREYEEATVMETD	PTEOOI	VPLCT	K	DIVHL	LNELET	KEDBLIG	10	KAYKVET VGDS YMS V
GC (bee)/415-599	415	DT CEME DS VS I LES DA	VTETEI	CSRIT	M	EVVSM	LNAMYS	LEDTLTE	R N	RVYKVETIGDAYMVV
GC (algae)/469-654	469	- PAOEHPEATVLESDI	VGETEI	ASRSS		EVCSI	LDELYO	REDAALEI	F Y P	OL Y K VET LGDA YMV V
tmAC C1(rat)/280-456	280	LYVKBHTNVSLLYADI	VGETRI	ASDCS	2 6	ELVHM	INFLEG	KEDOLAK	F N	ECMBIKILGDCYYCV
tmAC C1(rabbit)/463-639	463	LYLOKHDNVSILEADI	EGETSI	ASOCT	0	ELVMT	LNELEA	REDKLAA	E N	HCLBIKILGDCYYCV
tmAC C2 (rat)/877-1079	877	LYHOSYDCVCVME AS I	PDFKFF	YTESDY	NKEGI	ECIBL	INFILA		KPKES	G V F K I KT I G S T Y MAA
tmAC C2(rabbit)/1065-1261	1065	LYYOSCECVAVMEAS	ANESEE	YVELE	NNEGV	ECIRI	INFILA		EDRER	OLEKIKTIGSTYMAA
AC (Nostoc)/284-467	284	MIADGESDATVMEADI	VGETDI	SGRIPI	0	RLVDL	LNOIES	REDLLAE	S Y	NLEKIKTIGDAYMVV
AC (Benniatoa)/143-329	143	TVEPOLVEKILEESDI	LAESTI	TEKLPY	/ N	EVVII	VNRYES		A Y	GGEVTKELGDCVMAS
AC (Acrobacter)/457-647	457	FESAKSKEVTLEESDI	RGETNI	SEKLD	АК		INRYMO	PMSELLL	K Y	OGT LDKE LGDA LMAY
AC (Persephonella)/427-617	427	GLGGEEKEITVLFADI	RDETVI	TEKLS	H	OVAKL		SMTKILL	E N	KGLLDKYLGDAIMAV
ne (reisephonena), izr orr						Q. MALE				
		μi γ	α				α2			β2 β3
									Pv	
	507	TCADDY	VADUA	E D A C N			F K T	TOTO		
KhGC(Be)/443-626	507	TGAPDV	- VPDHA	ERACNI	AVDII	EMIKS	F K	- ITGES -	NIK	
KhGC(Ca)/443-626	507	IGAPEV	- VPDHA	DRAVNE	ALDIT	EMIKI	FKI	- AIGES -	NIKI	
GC (C.elegans)/442-627	505	GGTPDL	- VDDHC	EVICHU	ALGMV	MEARI	VCDP	- TINIP - L	. H I KA	J T H S G P V V A G V V G A K
GC (bee)/415-599	4/9	SGAPVK	- ENDHA	DRVCDN	ALDMV	EATID	LKDR	-SIGLH-L	QIRV	G V H S G A V V A G I V G L K
GC (algae)/469-654	533	CNVIVP	- CDDHA	DVLLEF	ALRMH	EEASR	V A S	- SLGEP - V		GMHSGPVVAGVVGRK
tmAC C1(rat)/280-456	344	SGLPIS	- L P N H A	KNCVKN	IGL DMC	EAIKK	V R D	- AIGVD -	INMRV	SVHSGNVLCGVIGLQ
tmAC C1(rabbit)/463-639	527	SGLPEA	- RADHA	HCCVEN	GMDMI	EAISL	V R E	- V T G V N - V	/ NMRV	JIHSGRVHCGVLGL R
tmAC C2 (rat)/877-1079	948	TGLSAIPSQEHAQEPE	RQYMHI	GTMVEF	AYALV	GKLDA	INK	- HSFND - F	KLRV	5 I N H G P V I A G V I G A Q
tmAC C2(rabbit)/1065-1261	1136	SGLNDSTYDK	VGKTHI	KALADE	AMKLM	DQMKY	I N E	- H S F N N - F	QMKT	5 L N I G P V V A G V I G A R
AC (Nostoc)/284-467	348	GGLPNP	- R P D H A		GLDIL	DATAQ	FNL	- DTGEQ - F	KIRI	SINSGPVVAGVIGIK
AC (Beggiatoa)/143-329	207	FT	K E Q G		SLDII	S E L K Q	LRHHVE		YTGI	G L S Y G H V I E G NMG S S
AC (Acrobacter)/457-647	521	WNAP D	- IKNHC	DLALKA	SLEQL	EVLEK	LNVELEI	KENLPK -	IDIGI	<mark>G L NT G T V I V G E MG</mark> S S
AC (Persephonella)/427-617	491	FNAPLT	- V P D H S	DKACKI	ALDMV	KRLDQ	VNRNLEI	KQNLPH-L	K IG I	G I N T G R A I I G N L G S S
		+			α3					β4
		B R/Ü	Û							
RhGC(Be)/443-626	562	- NPHWCLVGDTVNTAS	RMESTS	KAGHII	H I S E	STYHF	K S K	F V T Q P L D V	/ M E V K	G K G K M Q T Y W V L G R K
RhGC(Ca)/443-626	562	- NPHWCLVGDTVNTAS	RMESTS	KAGHII	+ I S D	STYQM	K G K	F V T Q P L D I	LMEVK	G K G K M Q T Y W V T A R K
GC (C.elegans)/442-627	561	- MPRYCLFGDTVNTSS	RMESHS	PIGRI	+ <mark>C</mark> S E	NAKKC	AESTGR	FEFEPRGI	RVQIK	G K G E M N T Y F L L R S F
GC (bee)/415-599	535	- MPRYCLFGDSVNTAS	RMEATS	QAMQII	H I S Q	STKEL	L S P S	Y R V K E R G I	EIEVK	<mark>G</mark> K G I M K T Y W L E K R E
GC (algae)/469-654	588	- MPRFCLFGDTVNTAS	RMESHO	EAGQII	H I S E	ACYCC	LRSKER	FEIRERGI	интик	GKGTMRTYLLSPLE
tmAC C1(rat)/280-456	399	- KWQYDVWSHDVTLAN	HME AG G	VPGRVI	H I S S	VTLEH	L N G A	YKVEE		G DG E I R D P Y L K Q H L
tmAC C1(rabbit)/463-639	582	- KWQFDVWSNDVTLAN		KAGRI	н I т к	ATLNY	L NG D	YEVEP		G C G G E R N A Y L K E H S
tmAC C2 (rat)/877-1079	1014	- K P Q Y D I WG N T V NV A S	RMDSTO	VLDKI	VT E	ETSLI	LQT - LG	YTCTCRG	IINVK	GKGDLKTYFVNTEM
tmAC C2(rabbit)/1065-1261	1196	- K P Q Y D I WG N T V N V A S	RMDSTO	VPDRIC	2 V T T	DMYQV	LAA-NT	V Q L E C R G '	v v к v к	G K G E M M T Y F L N G G P
AC (Nostoc)/284-467	403	- K F I Y D L WG D T V N I A S	RMESHO	TPNRI	+ V S A	ASHEL	L K D S	FLFEDRG	/ ΤΑΙΚ	G K G D M Q T Y W L K G K I
AC (Beggiatoa)/143-329	262	LKMDHTLLGDAVNVAA	RLEALT	RQLPY	LAFTA	GVKKC	CQ AQ	NTFINLG	AHQVK	GKQEAIEVYTVNEA
AC (Acrobacter)/457-647	580	LRSDYTVIGDTINLGS	RVESLO	KYYDSI	(LN I	SNFTK	DKLQEK	YIFRFLDI	LVKVK	GKNEPVEIWQVLGK
AC (Persephonella)/427-617	550	LRFEYTAIGDTVNLAS	RLEGLN	RIYGTI	DII V	SQFTV	SKVKSD	FLFRKLDI	RVRVK	GKEEAVEIYQLMEK
			-	_		-		07		

Abb. 35 Aminosäuren Sequenz-Vergleich diverser Nukleotidyl-Zyklasen Der Vergleich wurde mithilfe von ClustalO²⁰⁷ erstellt; die Farben entsprechen einer Sequenz-Konservation von 30 %. Die Sekundärstrukturen unterhalb des Vergleichs basieren auf der CaAC Struktur. Die Buchstaben oberhalb des Vergleichs verdeutlichen die 7 funktional wichtigen Aminosäuren, die an der Bindung und dem Umsatz des Substrats beteiligt sind. B = Bindung der Base, Ü = Stabilisierung des Übergangszustands, R = Bindung der Ribose, Py = Bindung des y-Phosphats, Me = Bindung der metallischen Cofaktoren ($Ca^{2+}/Mg^{2+}/Mn^{2+}$). Die folgenden Sequenzen wurden für die Erstellung des Vergleichs benutzt. Die Guanylylzyklase Domäne von RhGC aus Blastocladiella emersonii (Be) (AIC07007.1), von RhGC aus Catenaria anguillulae (Ca) (gb: MF939579), von Caenorhabditis elegans (C.elegans) (NP 510557), von Apis (bee) Chlamydomonas reinhardtii mellifera (NP 001012645), von (algae) XP 001700847.1. Die Adenylylzyklase Domänen entstammen der Typ Π Transmembranständige Adenylylzyklase aus Rattus norvegicus (rat) (P26769.1), der Typ V Transmembranständige Adenylylzyklase des Hasen (rabbit) (CAA82562.1), aus Nostoc sp. PCC7120 (Nostoc) (WP 010994837.1), aus dem marinen Bakterium Beggiatoa alba (ADC33127.1), aus Arcobacter butzleri RM4018 (Acrobacter) (WP 012012652.1), und aus Persephonella marina (Persephonella) (WP 015898934.1).

Um Rhodopsin-Adenylylzyklasen zu generieren, wurden Be/CaRhGC an den Positionen 497 und 566 einzeln bzw. doppelsubstituiert durch die Adenylylzyklasen typischen Aminosäuren (Lys bzw. Asp/Thr). Der Effekt auf die Substratspezifität wurde nach Expression der Konstrukte in Xenopus Oocyten immunhistochemisch mithilfe von cAMP (Abb. 36a) und cGMP ELISAs untersucht (Abb. 36b). Hierbei zeigte sich, dass das Einführen der Doppelmutation E497K/C566D zu der gewünschten ATP Substratspezifität führte. Die doppelmutierten RhGCs E497K/C566D werden daher im Folgenden als Rhodopsin-Adenylylzyklasen (RhACs) bezeichnet. Belichtung führte im Fall von CaRhAC zu einem ~6x Anstieg der intrazellulären cAMP Produktion (18.9 pmol/Oocyte) gegenüber dem cAMP Gehalt in unbelichteten Zellen (3.1 pmol/Oocyte), der leicht über dem Kontrollwert (1.4 pmol/Oocyte) lag. Im Vergleich zu CaRhAC war die Licht-zu-Dunkel Aktivität bei BeRhAC verkleinert (1.2x) und die Dunkelaktivität erhöht (17 pmol/Oocyte). Für beide RhAC Varianten (Be/CaRhAC) verblieb die cGMP Synthese auf dem Niveau von Kontrollzellen (Abb. 36b). Dies bestätigte die erfolgreiche Substratspezifitätsänderung der RhACs durch die Doppelmutation E497K/C566D, die durch die Einzelmutationen E497K, C566D, C566S oder C566A nicht erzielt werden konnte (Abb. 36a). Im Gegensatz zur E497K Variante, konnte bei der C566D/C566S/C566A Variante eine Guanylylzyklase Aktivität gemessen werden (Abb. 36, tr43CaRhGC 155 ± 20 pmol cGMP/Oocyte, Abb. 31). Dies verdeutlicht, dass E497 (Interaktion mit N1 und N2-Aminogruppe) essentiell für die Guanylylzyklase Funktion ist, während die Aminosäure an Position 566 (Interaktion mit der Guanin C6-Ketogruppe) austauschbarer ist. Ferner wurden in Anlehnung an Typ IIIb ACs die Mutationen E497K/C566T und E497K/L504M/C566T¹⁷⁰ eingeführt, um eine ATP Substratspezifität herbeizuführen. Die cAMP Synthese dieser Varianten war jedoch 9x reduziert gegenüber CaRhAC (Abb. 36a).

Die jeweiligen Konstrukte wurden in Oocyten über 5 Tage exprimiert (10 ng cRNA). Der intrazelluläre Gehalt an cAMP (a) bzw. cGMP (b) in dunkel-adaptierten Oocyten oder grünbelichteten Oocyten (5 min, 522 nm, 0.01 mW mm⁻²) wurde mithilfe eines ELISA Tests quantifiziert. Die Werte zeigen die cNMP-Konzentrations-Mittelwerte und den Standardfehler. *P <0.05, **P < 0.01, ****P < 0.001, Zweistichproben-t-Test (unabhängige Stichproben), n.s. = nicht signifikant. Ktrl = nicht-injizierte Kontroll-Oocyten, ELISA = Enzyme-linked immunoabsorbent assay, RhGC = Rhodopsin-Guanylylzyklase, RhAC = Rhodopsin-Adenylylzyklase, tr = trunkiert

2.6.1 Enzymatische Aktivität des Volllängen CaRhAC Konstrukts (E497K/C566D) und der isolierten CaAC Domäne

Basierend auf den ELISA Ergebnissen wurde CaRhAC mit der Mutation E497K/C566D als geeigneter Kandidat für eine weiterführende Charakterisierung identifiziert und gemäß dem Wildtyp Protokoll in Insektenzellen exprimiert und aufgereinigt (Solubilisierung in Detergenz). Inkubation der aufgereinigten CaRhAC mit ATP/Mn²⁺ und nachfolgende Belichtung induzierte den Umsatz von cAMP. Dieser konnte jedoch auch in Dunkelheit nachgewiesen werden und entsprach ~50% der Lichtreaktion (Abb. 37a,b). Die Erhöhung der Dunkelaktivität der aufgereinigten CaRhAC im Vergleich zu CaRhAC in Oocyten Membranen (Abb. 36a, Dunkelaktivität: ~25% der Lichtreaktion) wurde auf den destabilisierenden Effekt des Detergenz zurückgeführt. Dieser konnte ebenfalls bei den aufgereinigten Wildtyp Be/CaRhGCs beobachtet werden (Abb. 14, Abb. 29). In Übereinstimmung mit den vorherigen Ergebnissen (Abb. 36b) konnte die CaRhAC Substrat-Spezifitätsänderung durch die eingeführten Mutationen bestätigt werden und keine cGMP Akkumulation nach GTP/Mn²⁺ Zugabe nachgewiesen werden (Abb. 37a). Wie zuvor bei wt Be/CaRhGC (Volllängen Konstrukt oder isolierte Zyklase) wurde Mn²⁺ als essentieller Cofaktor der CaRhAC Katalyse identifiziert, während in Gegenwart von Mg²⁺ oder Ca²⁺ kein cAMP Umsatz detektierbar war (Abb. 37a). Trotz der bestehende Dunkelaktivität wurde CaRhAC enzymkinetisch weiter charakterisiert und Abb. 37c-d zeigt die Michaelis-Menten Enzymkinetik (Licht - Dunkel, Abb. 37d) mit einem deutlich reduzierten $v_{max} = 40.95$ cAMP µmol min⁻¹ µmol_{protein}⁻¹ verglichen zu wtCaRhGC (Tabelle 1, Tabelle 3). Auch die CaRhAC Dunkelproben (Abb. 37c) folgten einer Michaelis-Menten ähnlichen Enzymkinetik und zeigten kein lineares Substrat-Geschwindigkeits-Verhalten, wie zuvor wtCa/BeRhGC. Es ist anzumerken, dass die enzymkinetische Analyse direkt nach der CaRhAC Aufreinigung erfolgte und trotz Zugabe von Protease-Inhibitoren ein Zerfall von CaRhAC durch einen anti-His Immunoblot nachgewiesen werden konnte (Abb. 37b). Die Bande bei ~25 kDa wurde der isolierten Zyklase Domäne (442 - 626 AS, 21.5 kDa) zugeordnet, die konstitutiv aktiv ist (Abb. 38a,b). Neben dem destabilisierenden Effekt des Detergenz könnte somit die Dunkelaktivität von CaRhAC durch das Vorhandensein der konstitutiv aktiven Zyklase, CaAC, erklärt werden. Unterstützend für diese Annahme, folgen die Dunkelproben (Abb. 37c) einer Michaelis-Menten-Kinetik.

Die Bestimmung der Enzymaktivität basierte auf der cAMP Syntheseleistung. cAMP wurde mithilfe einer Umkehrphase-HPLC detektiert (a) Die Enzymatische Aktivität von CaRhAC in Abhängigkeit von verschiedenen Substraten (1 mM) und Cofaktoren (1 mM). Inkubation bei Belichtung (522 nm, 1 μ W mm⁻²) bzw. Dunkelheit für 2 min (pH 7.5). (b) anti-His Immunoblot der aufgereinigten CaRhAC (70.6 kDa). (c) Michaelis-Menten Enzymkinetik des aufgereinigten Volllängen CaRhAC Konstrukts. Die enzymatischen Anfangsgeschwindigkeiten wurde bei verschiedenen ATP Konzentrationen (1 - 10 mM ATP/Mn²⁺, pH 7.5, n=3) unter Belichtung (522 nm, 1 μ W mm⁻²) bzw. Dunkelheit bestimmt. (d) Enzymatische Geschwindigkeiten der Lichtproben nach Abzug der Dunkelwerte aus (c). Ein Hill-Fit erlaubte die Bestimmung der enzymatischen Parameter, Tabelle 3. Die Balkendiagramme zeigen Mittelwerte mit den zugehörigen Standardfehlern. RhAC = Rhodopsin-Adenylylzyklase, AC = Adenylylzyklase, Ca = *Catenaria anguillulae*, Modifizierte und erweiterte Abbildung basierend auf Scheib et al. 2018¹⁸⁷.

Eine genauere Untersuchung der isolierten CaAC Domäne (Abb. 38c) bestätigte wiederum den Substrats-Spezifitätsaustausch durch die eingeführte Doppelmutation (E497K/C566D) und Mn²⁺ als essentiellen Cofaktor (Abb. 38a). Die Michaelis-Menten Enzymkinetik (Abb. 38b) erlaubte die Bestimmung der enzymatischen Parameter und zeigte ähnliche v_{max} und k_{cat} Werte wie der CaGC Wildtyp (CaAC: v_{max} = 121.38 cAMP µmol min⁻¹ µmol_{protein}⁻¹, K_M = 6.09 mM und k_{cat} = 1.01 s⁻¹, Tabelle 3). Im Vergleich zum Volllängen CaRhAC Konstrukt (Michaelis-Menten: Licht - Dunkelwerte) konnte ein erhöhter Substratumsatz für CaAC festgestellt werden. Dies könnte mit der Detergenz-Umgebung des Volllängen Konstrukts zusammenhängen. Das pH Optimum für CaAC wurde bei pH = 9 identifiziert (Abb. 38d). Ferner konnte die CaAC vermittelte cAMP Synthese durch die ATP Analoga Adenosin-5'-(α -thio)-triphosphat (ATP α S, jeweils Rp und Sp) und Adenosin-5'-[(α,β)-methylen]triphosphat (APCPP) inhibiert werden (Abb. 38e).

Abb. 38 Enzymatische Aktivität der isolierten CaAC Domäne

Die Bestimmung der Enzymaktivität basierte auf der cAMP Syntheseleistung. cAMP wurde mithilfe einer Umkehrphase-HPLC detektiert. (a) Enzymatische Aktivität der isolierten CaAC Domäne in Abhängigkeit von verschiedenen Substraten (1 mM) und Cofaktoren (1 mM) nach 5 min Inkubation (pH 7.5); gezeigt sind die detektierten cNMP Peak-Flächen (mAU*min) pro mg Protein. (b) Michaelis-Menten Enzymkinetik von CaAC (0 - 15 mM ATP/Mn²⁺, pH 7.5, n=3). (c) SDS Gel des aufgereinigten CaAC (21.5 kDa) (d) pH Abhängigkeit der CaAC Enzymaktivität (5 min, 1 mM ATP/Mn²⁺), gezeigt sind die cAMP Peak-Flächen (mAU*min) pro mg Protein (e) Inhibition der CaAC Enzymaktivität durch die ATP-Analoga ATPaS (beide Diasteromere) und APCPP (10 min, pH 7.5, 0.5 mM ATP/Mn²⁺). Die Balkendiagramme beziehen sich auf Mittelwerte mit den zugehörigen Standardfehlern. RhAC = Rhodopsin-Adenylylzyklase, AC = Adenylylzyklase, Ca = *Catenaria anguillulae*, APCPP = Adenosin-5'-[(α , β)-methylen]triphosphat, ATPaS = Adenosin-5'-(α -thio)-triphosphat. Modifizierte und erweiterte Abbildung basierend auf Scheib et al. 2018¹⁸⁷.

	CaRhAC	CaAC	CaRhGC	CaGC
	(E497K/C566D)	(E497K/C566D)		
	Licht-		Licht-	
	dunkel		dunkel	
Substrat	ATP	ATP	GTP	GTP
HillFit R ²	0.99	0.97	0.96	0.98
К _м (mM)	2.38	6.09	6.1	5.78
	+/- 0.11	+/- 1.74	+/- 5.6	+/- 2.04
n	1.58	1.29	1.1	1.22
	+/- 0.06	+/- 0.06	+/- 0.4	+/- 0.08
V _{max}	0.58	5.64	11.6	6.30
(cNMP(µmol min ⁻¹ mg _{protein} ⁻¹)	+/- 0.011	+/- 1.24	+/- 5.7	+/- 1.54
V _{max}	40.95	121.38	821.7	135.59
(cNMP(µmol min ⁻¹ µmol _{protein} ⁻¹)	+/- 0.78	+/- 26.68	+/- 400.3	+/- 33.14
k _{cat} (s ⁻¹)	0.34	1.01	6.85	1.13
$k_{cat/KM} (s^{-1} mM^{-1})$	0.14	0.17	1.12	0.20
Molekulargewicht (kDa)	70.6	21.5	70.6	21.5

Tabelle 3 Enzymatische Parameter von CaRhAC/CaRhGC und CaAC/CaGC

Im Anschluss an die enzymatische Analyse wurde die GTP/ATP-Bindungsaffinität der isolierten CaAC Domäne untersucht. Nach Titration des jeweiligen Substrats zu CaAC wurde die Abnahme der Trp-Fluoreszenz gemessen und der entsprechende K_D Wert bestimmt. Vergleichbar mit der Wildtyp Domäne (CaGC) konnte bei CaAC ein GTP- K_D Wert von 92 ± 46 μ M (n=4) und ein ATP- K_D Wert 355 ± 50 μ M (n=4) bestimmt werden. Da für CaAC kein GTP-Umsatz festgestellt werden konnte, verdeutlicht dies, dass die Mutationen E497K/C566D erst während der Katalyse die Substratselektivität beeinflussen.

2.6.2 Anwendung von CaRhAC in hippokampalen Rattenneuronen

Zum Abschluss der biochemischen Analysen wurde die Anwendbarkeit von CaRhAC in hippokampalen Rattenneuronen (Wistar) getestet ¹⁸⁷. In den elektrophysiologischen Messungen stellte sich ein N'-terminales Anhängen des YFP-tags als vorteilhaft heraus und transfizierte Neurone zeigten eine typische Membran-Antwort nach Applikation somatischer Ströme (Abb. 39a,b). An dieser Stelle sei auf die detaillierte elektrophysiologische Analyse weiterer CaRhAC Konstrukte (z.B. CaRhAC-mychis) im Zusatzmaterial bei Scheib et al. 2018¹⁸⁷ verwiesen. Die Co-Expression von YFP-CaRhAC mit dem cAMP sensitiven CNG-A2 Kanal (C460W/E583M) ¹⁹⁰ führte zur Induktion von Einwärtsströmen nach Grün-Belichtung (Abb. 39c-e). Dies bestätigte die zuvor gezeigte Licht-aktivierten cAMP Produktion und somit die Funktionalität von CaRhAC. Dahingegen zeigten Neurone, die YFP-CaRhAC allein oder zusammen mit CNG-A2(cGMP) exprimierten keine oder geringe Photoströme. Hierbei, könnte der CNG-A2(cGMP) vermittelte Einstrom auf die Öffnung endogener cAMP sensitiver Kanäle (hyperpolarization and cyclic nucleotide-gated channels = HCN 208) bzw. auf eine cAMP vermittelte Öffnung des CNG-A2(cGMP) zurückzuführen sein. Mit zunehmender Lichtintensität war bei den Neuronen mit YFP-CaRhAC/(CNG-A2(cAMP) ein Anstieg der Photostrom-Anfangssteigungen Photostrom-Amplituden und messbar (Abb. 39f,g). Vergleichbar mit dem Wildtyp führte eine Lichtintensität von 0.61 mW mm⁻² (EC₅₀) zu einer halbmaximalen Sättigung der Photostrom-Anfangssteigungen (Abb. 39g). Im Gegensatz zu YFP-CaRhAC wurde YFP-BeRhAC in hippokampalen Neuronen nicht toleriert ¹⁸⁷, vermutlich aufgrund der erhöhten Dunkelaktivität des Konstrukt (Abb. 36a).

Zusammenfassend bestätigten die elektrophysiologischen Experimente in hippokampalen Neuronen die Funktionalität und Anwendbarkeit von CaRhAC als optogenetisches Werkzeug zur cAMP Kontrolle.

Abb. 39 Anwendung von CaRhAC in hippokampalen Rattenneuronen

Die Messung der Photoströme erfolgte mithilfe der Ganzzell Patch-Clamp Methode. Für die Elektroporation der Neurone wurden folgende DNA-Konzentrationen verwendet: 25 ng/µl der YFP-RhAC, 25 ng/µl CNG Kanäle, sowie 5 ng/µl mtSapphire. (a) Expressionsnachweis von CaRhAC sieben Tage nach Elektroporation des Neurons mit YFP-CaRhAC und mtSapphire. (a1) indirekter Nachweis durch die mtSapphire Fluoreszenz (2 Photon-Anregung, 800 nm) (a2) direkter Nachweis durch die YFP-CaRhAC Fluoreszenz (2 Photon-Anregung, 950 nm). (b) Typische Membran-Antwort auf somatische Ströme (-400 - 400 pA, 100 pA Intervalle) eines repräsentativen Neurons, das mit YFP-CaRhAC und CNG-A2(cAMP) transfiziert wurde. (c) Stromkennkurven eines repräsentativen Neurons mit YFP-CaRhAC und CNG-A2(cAMP) nach wiederholter Applikation von Lichtimpulsen (100 ms, 530 nm, 0.3 mW mm⁻², Intervall 20s). (d) Photoströme von Neuronen, die YFP-CaRhAC alleine oder zusammen mit dem cGMP sensitiven bzw. dem cAMP sensitiven CNG-A2 Kanal exprimierten (2s, 27.3 mW mm⁻²). Die Vergrößerung vergleicht den Photostrom-Beginn des Wildtyps CaRhGC, mit der Mutante, YFP-CaRhAC. (e) Analyse der maximalen Photostrom-Amplituden und Anfangssteigungen aus (d). Der Medianwert und der zugehörige Interquartil-Bereich sind dargestellt, von links nach rechts: n = 10, 6, 6, 10, * p = 0.023, ** p = 0.0016, Kruskal-Wallis Test vs YFP-CaRhAC + CNG(cAMP). (f) Repräsentative Photoströme nach Belichtung eines Neurons mit YFP-CaRhAC/CNG-A2(cAMP) mit zunehmenden Lichtintensitäten. (g) Nach Normalisierung zur maximalen Peak-Amplitude konnte die halbmaximale Sättigung der Photostrom-Anfangssteigungen aus (f) mit einem $EC_{50} = 0.61 \text{ mW mm}^{-2}$ (Fit mit quadratischer Gleichung) bestimmt werden, n = 8. Die Abbildung beruht auf Scheib et al. 2018¹⁸⁷, die Daten wurden von Oana Constantin, Christine Gee (UKE Hamburg) erhoben.

2.7 Kristallisation der isolierten Zyklase Domänen

2.7.1 Kristallisation der Guanylylzyklasen, BeGC & CaGC

Um strukturelle Einblicke in die neu-entdeckte Photorezeptoren zu generieren, wurden BeRhGC Kristallisations-Screens angesetzt. Da keine Kristalle des Volllängen-Proteins generiert werden konnten, wurden die isolierten Zyklasen (443 - 626) BeGC und CaGC im Beisein der inhibiterenden GTP Analoga GTPaS und GPCPP (Inhibition gezeigt in Abb. 17e, Abb. 30c) kristallisiert. Mithilfe des "sitting-drop" Verfahrens wurden pro Inhibitor ca 500 unterschiedliche Bedingungen bei 2 Proteinkonzentrationen (10 mg/ml und 5mg/ml) getestet. In ca 20 Bedingungen bildeten sich nach einer Woche Kristalle, die den Ansätzen entnommen wurden und vor dem Einfrieren in flüssigem Stickstoff, in eine Salz/Inhibitor/Cryo-Protektivhaltige Lösung getaucht wurden. Die Kristalle wurden am Synchrotron (BESSY II) vermessen und für BeGC wurden zwei Datensätze mit einer Auflösung von 1.2 Å und 1.5 Å aufgenommen. Für CaGC wurde ein 1.2 Å Datensatz gemessen.Die Strukturmodelle von BeGC wurden durch Molekularen Ersatz mit einer modifizierten mykobakteriellen AC Rv1625c (PDB: 4P2F) generiert (R-Faktoren siehe Tabelle 4). Darauf aufbauend wurde die CaGC Struktur durch molekularen Ersatz mit einem BeGC Modell gelöst (93 % Sequenzidentität mit BeGC) Die kristallographischen Datentabellen sind im Anhang (BeGC Tabelle 20, Tabelle 21; CaGC: Tabelle 22) hinterlegt.

	Auflösung	Rwork	Rfree	Inhalt der	Raumgruppe
	(Å)			asymmetrischen	
				Einheit	
BeGC	1.2	0.1562	0.1892	Dimer	P21212
BeGC	1.5	0.1730	0.2104	Monomer	P21212
CaGC	1.2	0.1550	0.1724	Monomer	1222
CaGC (ohne Tag)	~2	0.2511	0.2786	Monomer	P6522

Tabelle 4 Übersicht der Be/CaGC Strukturmodelle

*Wenn nicht anders vermerkt, verfügten die jeweiligen Konstrukte über einen His-tag

In der asymmetrischen Einheit konnten bei den BeGC Strukturmodellen 1 bzw. 2 Proteine und bei CaGC ein Monomer vorgefunden werden (Abb. 40b-d). Bei allen RhGC Zyklase Modellen lag die typische Typ III Topologie (Abb. 40a, Anhang Abb. 51) mit einem zentralen 7-strängigen β -Faltblatt und 3 umgebenden α -Helices vor. Mit Ausnahmen des 1.5 Å BeGC Strukturmodells konnten die β 4/5 und die β 7/8 Schleifen bei allen GCs vollständig modelliert werden. Trotz ihres typischen Klasse III Aufbaus, konnte - auch nach Analyse der kristallographischen Kontakte (Nachbarproteine) - für keines der Strukturmodelle eine antiparallele Anordnung der katalytischen Untereinheiten festgestellt werden. Damit einhergehend liegt bei keinem der Strukturmodelle ein gebundenes GTP-Analogon vor, obgleich dieses während der Kristallisation anwesend war.

Abb. 40 Strukturmodelle von BeGC und CaGC

Zur Unterscheidung der Untereinheiten sind diese jeweils unterschiedlich koloriert: blau-grün bzw. hellgrün-rot. (a) antiparallel angeordnetes Dimer von tmAC (PDB 1CJK). (b) 1.2 Å BeGC Struktur mit einem Dimer in der asymmetrischen Einheit. Die Dimer-Interaktionsflächen umfassen $\beta 4/\beta 5$ und $\beta 2/\beta 3$, der gestrichelte Kreis weist auf die Disulfidbrücke zwischen den Dimer-Einheiten hin. (c) 1.5 Å BeGC Struktur mit einem Monomer in der asymmetrischen Einheit. (d) 1.2 Å CaGC Strukturmodell. Der gestrichelte Kreis verdeutlicht die über Ca²⁺vermittelten kristallographischen Kontakte. (e) Gelelektrophorese (SDS-Page) von CaGC nach und vor Abschnitt des His-Tags mittels TEV Protease. (f) ~2 Å Struktur von CaGC, ohne Histag. Der kristallographische Kontakt zwischen den Proteinen wird durch eine Disulfidbrücke (C566, $\beta 5$) gefestigt (gestrichelter Kreis). BeGC = Guanylylzyklase aus *Blastocladiella emersonii*, CaGC = Guanylylzyklase aus *Catenaria anguillulae*, tmAC = transmembranständige Adenylylzyklase, ATPaS = Adenosin-5'-(α -thio)-triphosphat, TEV = Tobacco Etch Virus (Tabakmosaikvirus), krist = kristallographisch Im Fall der dimeren BeGC Struktur (1.2 Å, Abb. 40b) orientieren sich die Untereinheiten parallel; die Interaktionsfläche zwischen den Untereinheiten umfasst $\beta 4/\beta 5$ und $\beta 2/\beta 3$. Die dimere Anordnung wird durch eine Disulfidbrücke zwischen C566 ($\beta 5$) beider Untereinheiten stabilisiert. Bei CaGC (1.2 Å, Abb. 40d) vermittelt Ca²⁺ einen kristallographischen Kontakt zwischen benachbarten Proteinen, das durch Cys566 und den His-tag des Nachbarporteins gebunden wird. Da die Ca²⁺ vermittelte Interaktion mit parallel ausgerichteten CaGC Untereinheiten einhergeht, wurde CaGC in der Folge ohne His-tag kristallisiert (Abb. 40e, f). Das resultierende CaGC Strukturmodell (ohne His-tag, ~2 Å, Abb. 40f) zeigt ein Monomer in der asymmetrischen Einheit, das trotz der Anwesenheit von 2 mM DTT eine Disulfidbrücke zu einem parallel ausgerichteten Nachbarmonomer bildet. Infolgedessen wurde C566 substituiert und die C566A CaGC Mutante kristallisiert, deren cGMP Aktivität im Vergleich zum wt halb so groß war (C566Atr43: 70 pmol cGMP/Oocyte, n=4, ELISA Quantifizierung Oocyten Lysaten). Wiederum konnten hochauflösende Kristalle generiert werden, die weder über antiparallel ausgerichtete Untereinheiten noch über einen gebundenen Liganden verfügten (61.246 65.8 67.5 90 90 90 P 212121, Modell nicht gezeigt, XRD 7, US-C229-pos3).

Ein Vergleich der einzelnen BeGC und CaGC Strukturen untereinander zeigt eine hohe strukturelle Übereinstimmung mit 1) einem RMSD = 0.23 - 0.274 Å nach Überlagerung der Ca Atome des 1.5 Å BeGC Monomers zur A bzw. B Kette des 1.2 Å BeGC Dimers, 2) einem RMSD = 0.241 Å nach Ca-Superimposition des 1.5 Å BeGC Monomers mit 1.2 Å CaGC. Strukturelle Unterschiede fokussieren sich auf die Orientierung der $\beta 4/\beta 5$ Schleife und die $\beta 7/\beta 8$ Schleifen und im Bereich der a1 Helix. Hohe strukturelle Übereinstimmung besteht zudem zu anderen veröffentlichten hochaufgelösten BeGC Strukturen, benannt GC_{Rho}-Monomer und GC_{Rho}-Dimer ¹⁹⁴ (Abb. 41a-b). Die Untereinheiten des GC_{Rho}-Dimers sind ebenfalls parallel angeordnet sind und wie bei der dimeren BeGC Struktur (Abb. 40b) konnte für das GC_{Rho}-Dimer eine Disulfidbrücke via C566 ($\beta 5$) zwischen den Untereinheiten detektiert werden. Im Unterschied zum BeGC Dimer ist die relative Ausrichtung der Untereinheiten verändert.

Zur Unterscheidung der Untereinheiten sind diese jeweils unterschiedlich koloriert: blau-grün bzw. hellgrün-rot. (a) Überlagerung der A Ketten der dimeren Strukturen von BeGC (1.2 Å, blau-rot) und GC_{Rho}^{194} (PDB: 6AOB, A Kette dunkelgrau, B Kette hellgrau), RMSD = 0.325 Å. Der gestrichelte Kreis weist auf die Disulfidbrücke zwischen den Dimer-Einheiten von GCRho hin. (b) Überlagerung der monomeren Strukturen: BeGC (1.5 Å, bunt), GCRho (PDB: 6AO9, grau) und der mutierten GC mit AC Aktivität (PDB: 6AOA, hellgelb), RMSD = 0.08 – 0.09 Å. BeGC = Guanylylzyklase aus *Blastocladiella emersonii*, Rho = Rhodopsin

Neben den isolierten Zyklasen ohne Coiled-Coil wurde im Folgenden BeGC mit dem Coiled-Coil Linker, BeCC-GC (397 - 626 AS), kristallisiert. BeCC-GC Kristalle, die nach ~2 Monaten erschienen, streuten bis 2.3 Å. Molekularer Ersatz mit einem BeGC Modell zeigte ein Monomer in der asymmetrischen Einheit (P21212, Einheitszelle: 64.944 83.703 33.807 90.00 90.00 90.00, Daten nicht gezeigt). Die Coiled-Coil Region konnte aufgrund fehlender Elektronendichte nicht modelliert werden. In Anbetracht der langen Kristallisationsphase könnte dies auf eine Abspaltung des Coiled-Coil Linkers zurückzuführen sein.

Zusammenfassend für die kristallographische Analyse der isolierten Be/Ca Guanylylzyklase Domänen, verfügt keines der Strukturmodelle über a) eine Zyklase typische antiparallele Anordnung der Untereinheiten und b) einen gebundenen Liganden. Da bei Typ III Zyklasen die Substratbindung und der Substratumsatz von Aminosäuren beider Untereinheiten gesteuert werden, ist diese antiparallele Anordnung essentiell für deren enzymatische Funktion (Anhang Abb. 51). Aufgrund der konstitutiven Aktivität von Be/CaGC wird angenommen, dass die bisherigen Strukturen Be/CaGC nicht in ihrer katalytischen aktiven Form darstellen.

2.7.2 Die Liganden-gebundene CaAC Kristallstruktur (2.25 Å)

Um die enzymatische Spezifitätsänderung mechanistisch besser zu verstehen, wurde neben den wt Zyklasen die mutierte Zyklase (E497K/C566D) CaAC im Beisein der ATP Analoga ATPαS und APCPP kristallisiert. Wie bei den wt Proteinen wurden in einem initialen Ansatz ~500 Kristallisationsbedingungen pro Inhibitor bei 2 verschiedenen Proteinkonzentrationen (10 mg/ml, 5 mg/ml) getestet ("sitting-drops"). Kristalle, die sich in ihrer Form von den orthorhombischen wt Kristallen unterschieden, erschienen nach ca 1 Woche und wurden vor ihrer Vermessung (BESSY II) in eine Salz/Inhibitor-haltige Cryo-Lösung getaucht. Die ATPαSkokristallisierten Kristalle streuten bis 2.8 Å, während eine geringere Auflösung bei den APCPP-haltigen Kristallen erreicht wurde. Um einen höher aufgelösten Datensatz zu generieren, wurde die ATPaS Ko-Kristallisation mit ähnlichen und gleichen Bedingungen wiederholt. Zudem wurde die Proteinmenge auf 15 mg/ml erhöht und die Cryo-Lösung variiert (Trehalose/Glycerin). Nach Vermessung von ~20 Kristallen streute ein Kristall (Abb. 42a) mit eine maximale Auflösung von 2.25 Å und die CaAC Struktur konnte durch Molekularen Ersatz mithilfe des CaGC Strukturmodells (1.2 Å) gelöst werden (Abb. 42b). Im Gegensatz zu den isolierten Wildtyp Zyklasen Be/CaGC (Abb. 40) bilden die CaAC Untereinheiten antiparallele Dimere, die jeweils 2 ATPaS Liganden an der Dimerisierungs-Schnittstelle binden (Abb. 42c-d, kristallographische Tabelle Anhang Tabelle 23).

Die asymmetrische Einheit wird durch acht Dimere gebildet, die zu einer übergeordneten Superhelix, d.h. drei ineinander verflochtenen Helices, gehören (Abb. 42b). Wie zuvor für Be/CaGC (Abb. 40) kann ein Zyklase typischer Sekundärstrukturaufbau für die CaAC Untereinheiten vorgefunden werden mit einem 7-strängigen β -Faltblatt, das von 3 α -Helices umgeben wird (Abb. 42c,d). Die CaAC Dimerisierung wird durch die Bindung des Liganden, sowie Interaktionen zwischen 1) α 1 - β 7/8* Schleife, 2) α 1 - α 4*, 3) α 2 - β 4/5*, β 1* und 4) zwischen β 3(I499) - β 3*(I499*) stabilisiert.

Abb. 42 Kristallstruktur von CaAC mit gebundenem ATP Analogon (2.25 Å, PDB: 50YH)

(a) CaAC Kristall im ~200 μ M Loop mit 20% Cryo-lösung (b) CaAC Anordnung im Kristall, die Dimere bilden drei verflochtene Helices (rot, blau, grau). Die 16 Monomere (8 Dimere) einer asymmetrischen Einheit sind in Gelb dargestellt. (c) Topologische Aufbau von CaAC mit Zyklase-typischen Sekundärstrukturelemente (7-strängiges β -Faltblatt umgeben von 3 α -Helices) (d) das antiparallel angeordnete Dimer (Kette A/B) von CaAC mit 2 gebundenen Liganden ATP-Sp- α S an der Dimerisierungs-Schnittstelle. Die gestrichelten Pfeile deuten auf die $\beta 4/\beta 5$ Schleifen hin. Zur Unterscheidung der katalytischen Einheiten sind diese jeweils unterschiedlich koloriert: blau-grün bzw. hellgrün-rot. CaAC = Adenylylzyklase von *C. anguillulae*, ATP α S = Adenosin-5'-(α -thio)-triphosphat. Modifizierte Abbildung basierend auf Scheib et al. ¹⁸⁷.

Die Abweichung der einzelnen Monomere (16) untereinander ist klein und beschränkt sich auf einen RMSD von <0.2 Å. Bei 6 der 8 CaAC Dimere konzentrieren sich die sterischen Unterschiede vornehmlich auf die β 4/5 Schleife (AS 558-563), die in 2 Orientierungen vorliegt: a) in einer proximalen Position d.h. zum katalytischen Kern hin oder b) in einer distalen Position (vom katalytischen Kern weg), siehe Abb. 43a. Insbesondere bei der distalen Anordnung können schwache Interaktionen zur β 4/5 Schleife eines benachbarten CaAC-Dimers (Abb. 43b) detektiert werden (3.7 - 4.1 Å: hydrophobe Interaktionen zwischen L531 und W565, P563 und P563, sowie eine Wasser-vermittelte Interaktion zwischen D527 und W565 (<3 Å). Somit steht die distale β 4/5 Schleifenposition unter einem schwachen Einfluss der Kristallkontakte. Für die Dimere M/N und O/P konnten die β 4/5 Schleifen aufgrund fehlender

Elektronendichte nicht modelliert werden. Diese erhöhte Flexibilität könnte auf fehlende Kristallkontakte an dieser Stelle zurückzuführen sein.

Abb. 43 Orientierung der CaAC β4/5 Schleifen und Vergleich mit bPAC (PDB: 5MBE)

(a) Die Überlagerung unterschiedlicher CaAC Monomere zeigt zwei unterschiedliche Orientierungen der β 4/5 Schleifen. Bei der proximalen Orientierung (grün) weist die β 4/5 Schleife zum katalytischen Kern hin, während sich in der distalen Position die β 4/5 Schleife von der katalytischen Domäne entfernt. (b) Interaktionen der β 4/5 Schleife (rötlich) zu der β 4/5 Schleife eines benachbarten CaAC Dimers (orange). (c) Nach Überlagerung von CaAC mit der katalytischen Domäne von bPAC (PDB: 5MBE, RMSD = 3.165 Å) ergibt sich ein sterischer Konflikt zwischen den β 4/5 Schleifen von CaAC und den Coiled-Coil Helices von bPAC. CaAC = Adenylylzyklase von *C. anguillulae*, bPAC = photoaktivierte Adenylylzyklase von *Beggiatoa*. Modifizierte und erweiterte Abbildung basierend auf Scheib et al. 2018¹⁸⁷.

Als Folge der unterschiedlichen Schleifen-Orientierungen (proximal & distal) ergeben sich Positions-Abweichungen der dortigen Aminosäuren. Darüber hinaus erlaubt die proximale $\beta 4/5$ Orientierung die Ausbildung einer Wasserstoffbrücke von H564 zum Adenin-bindenden D566 (Abb. 43a). Bei dem cytoplasmatischen Photorezeptor bPAC wurde eine Licht-induzierte Bewegung der β4/5 Schleife als essentiell für die Weiterleitung des Aktivierungssignals von der BLUF Domäne zur Zyklase Domäne erachtet ¹⁷⁵. Zusammenhängend mit dieser Bewegung wird eine relative Offnung der Monomere zueinander beobachtet und die Re-Positionierung/Befreiung der Basen-bindenden Aminosäuren. Ein Vergleich von CaAC mit der katalytischen bPAC Domäne führt nach struktureller Überlagerung zu sterischen Konflikte zwischen den β4/5 Schleifen von CaAC und den Coiled-Coil Helices von bPAC (Abb. 43c). Dies ist vor allem auf die Nähe der beiden $\beta 4/5$ Schleifen zurückzuführen, die durch eine Wasserstoffbrücke zwischen N562 und P563* (Rückgrat (der Stern symbolisiert das gegenüberliegende Monomer)) stabilisiert wird (Abb. 43b). Nichtsdestotrotz könnte vergleichbar zu bPAC die β 4/5 Schleifenflexibilität essentiell für die Signalübertragung bei RhGCs sein.

Ein Vergleich der einzelnen CaAC Monomere zu CaGC (1.2 Å Struktur) und tmAC (PDB: 1CJK) zeigt hohe bzw. weitgehende strukturelle Übereinstimmung (CaGC: RMSD = 0.255 - 0.280 Å bzw. tmAC: RMSD = 2.5 Å). Unterschiede zu tmAC fokussieren sich hauptsächlich auf $\beta 4/5$, $\beta 7/8$, $\alpha 1$ und die die Lage des Liganden. Bei allen CaAC Dimeren liegt Elektronendichte für den Liganden ATP α S vor. Aufgrund der niedrigsten B-Faktoren der A/B Untereinheiten, fokussiert sich die detaillierte Analyse der Protein-Ligand-Interkationen auf eine der Bindetaschen zwischen den Monomeren A und B (Abb. 44a). Da während der Kristallisation ATP α S als Diasteromerengemisch vorlag, war es anfänglich schwer die Identität des Epimers (Rp oder Sp) eindeutig festzustellen (Abb. 44b). Jedoch führte die Verfeinerung mit dem Sp-Epimer zu niedrigen B-Faktoren, die den B-Faktoren Atomen der Proteinumgebung entsprachen. Dies deutete auf einen gebundenen ATP-Sp- α S Liganden bei CaAC hin, obgleich das Sp-Epimer bei anderen ACs umgesetzt wird und diese mit dem Rp-Epimer ko-kristallisiert wurden ¹²⁷. Im Gegensatz dazu konnte bei CaAC ein vergleichbares inhibitorisches Potential beider Diasteromere festgestellt werden (Abb. 38e).

Wie bei anderen Typ III Zyklasen sind Aminosäuren beider Untereinheiten am Aufbau der CaAC Bindetasche beteiligt (Abb. 44a). Hierbei konzentrieren sich die Interaktionen zur Adeninbase auf ein Monomer, während das Partner-Monomer (markiert mit *) die Phosphatgruppen und Ribose des ATP Analogons bindet. In Übereinstimmung mit anderen Typ III Zyklasen konnten die katalytisch wichtigen und für die Bindung essentiellen Reste in der CaAC Bindetasche identifiziert werden (Abb. 35, Abb. 44a). Demzufolge kann ein Zyklase typischer Mechanismus der ATP-Bindung und des ATP-Umsatzes angenommen werden. Hierbei beruht die Bildung von cAMP auf einer intramolekularen nukleophilen Substitution, bei der nach Angriff des Ribose 3'O ein pentavalentes α -Phosphor im Übergangszustand entsteht. Die Reaktion wird durch die Bildung von cAMP und PPi abgeschlossen.

Eine Analyse der Bindetasche zeigt, dass die zuvor mutierten Reste C566D (β 5) und E497K (β 2) als Wasserstoffbrückenakzeptor- und Donorpaar mit der exozyklischen N6-Aminogruppe und N1 des Pyrimidinrings der Adenin Base interagieren. Eine zusätzliche Wasserstoffbrücke wird zwischen N6-Aminogruppe und dem Rückgrat von L567 gebildet. Darüber hinaus findet eine Wasser-vermittelte Bindung von N7 des Purins an N573 (α 4) und G569 (α 4) statt. Diese Interaktionen erklären den Ursprung der Spezifitätsänderung auf struktureller Ebene und es ist ersichtlich, dass dieses Interaktionsmuster für GTP ungünstig wäre. Es ist anzumerken, dass

eine initiale Bindung von GTP nicht ausgeschlossen ist - wie durch Affinitätsmessungen (S. 71) gezeigt wurde – und die korrekte Positionierung des Substrats später im Reaktionsverlauf d.h. während der Katalyse ausschlaggebend für die Substrat-Diskriminierung ist. Neben diesen polaren Interaktionen ist Adenin von den hydrophoben Resten F455, L504, L567, V568, V572, V496, I499 und I499* umgeben (Abb. 44c).

Abb. 44 Einsicht in die CaAC Bindetasche mit dem ATP Analogon ATP-Sp-αS

(a) Übersicht über die CaAC Bindetasche (A/B Kette) mit dem Liganden ATP-Sp- α S. Konservierte Aminosäuren (vgl. Sequenz-Vergleich Abb. 35) stabilisieren den Liganden in der Bindetasche. Die zuvor mutierten Reste C566D und E497K vermitteln die Bindung der Adeninbase via Wasserstoffbrückenbindung zu N1 des Pyrimidins und der exozyklischen 6-Aminogruppe. Die Elektronendichte (omit-map) um ATP-Sp- α S ist mit einem Konturlevel von 5 σ dargestellt. (b) Sterischer Unterschied der ATP α S Diasteromere: ATP-Rp- α S und ATP-Sp- α S. (c) Vergrößerte Darstellung der Bindetasche um die Adeninbase und die Ribose. Aminosäuren in der Umgebung von C566D sind in rot dargestellt (564-568). (d) Vergrößerte Darstellung der Bindetasche um das Phosphat Rückgrat von ATP-Sp- α S. Einzelheiten bezüglich der Ligand-Protein Interkation sind im Text beschrieben. CaAC = Adenylylzyklase von *C. anguillulae*, ATP α S = Adenosin-5'-(α -thio)-triphosphat. Modifizierte Abbildung basierend auf Scheib et al 2018¹⁸⁷, PDB: 50YH.

Im Gegensatz zu anderen Liganden-gebundenen Adenylylzyklase Strukturen ist bei CaAC die Ribose (2'endo Konformation) perpendikular zur Adeninbase gekippt und interagiert direkt bzw. indirekt über H₂O mit den Resten der $\beta 2/3^*$ Schleife (D501*, I499*). Weiterhin bildet der Ribose-Ring-Sauerstoff eine schwache Wasserstoffbrücke zu S576; es findet keine Interaktion mit dem bei tmAC katalytisch relevanten N573 (α 4) statt. Die Phosphatgruppen des ATP α S bilden wie in anderen Zyklasen ein starkes Wasserstoffbrückennetzwerk zu den Aminosäuren der α 1/ β 1 Schleife (T462*, F461*, N460*). Zusätzlich koordiniert R545* über eine Salzbrücke das y-Phosphat (Abb. 44d).

Von den zwei Metallzentren, die aus anderen Zyklase Strukturen belegt sind ^{130,154}, ist bei CaAC nur die Ion B Position durch ein oktaedrisch gebundenes Ca²⁺ besetzt, das die Interaktion zwischen dem β /y-Phosphats und den konservierten Resten D457* (β 1*) und D501*(β 3*) vermittelt. Dahingegen ist die Position des katalytisch wichtigen Ion As -zwischen Ribose 3'OH und α -Phosphat - durch ein Wasser besetzt. Weiterhin rotiert das konservierte und katalytisch wichtige R577 (α 4) im A/B Dimer zum Liganden, wodurch eine Stabilisierung des zusätzlich negativ geladenen α -Phosphats im Übergangszustand denkbar wäre. Basierend auf der Tatsache, dass nicht in allen Dimeren Elektronendichte für R577 anzufinden ist, scheint die Position von R577 flexibel zu sein.

Abb. 45 Vergleich von CaAC(ATP-Sp-αS) mit tmAC(ATP-Rp-αS)

(a) Überlagerung der Liganden-gebundenen Strukturen CaAC (bunt) und tmAC (grau, PDB:1CJK), das im geschlossenen Zustand vorliegt (RMSD = 2.54 Å). Die Positionen der α 1-Helices stimmen weitgehend überein, während die CaAC β 7/8 Schleife im Vergleich zu tmAC vom katalytischen Kern weg weist. (b) Die Bindetasche von tmAC mit ATP-Rp- α S (PDB:1CJK). Das konservierte R1029 rotiert im geschlossenen tmAC in Richtung des α -Phosphats des Liganden. CaAC = Adenylylzyklase von *C. anguillulae*, ATP α S = Adenosin-5'-(α -thio)-triphosphat, tmAC = transmembranständige Adenylylzyklase. Modifizierte Abbildung basierend auf Scheib et al. 2018¹⁸⁷.

Um die Frage zu klären, ob sich CaAC im offenen bzw. geschlossenen Zustand befindet wurde CaAC mit dem ATP α S-komplexiertem tmAC überlagert, das sich im geschlossenen Zustand befindet (Abb. 45a). Laut bisherigen Erkenntnissen, ist der geschlossene Zustand a) das Ergebnis der Substratbindung ("induced fit") und stellt das Enzym vor Katalyse dar ¹⁶² oder b) der postkatalytische Zustand des Enzyms ¹³⁰. In beiden Theorien umfasst der geschlossene Zustand die sterische Annäherung zwischen der α 1-Helix und der β 7/8* Schleife. Zusammenhängend mit der β 7/8 Bewegung wurde eine Positonierung des Übergangzustandsstabilisierenden Arginins zum α -Phosphat beobachtet ¹²⁷. Die Überlagerung von CaAC mit ATP α S-tmAC (geschlossener Zustand) zeigt die CaAC α 1-Helix in der geschlossenen Position (Abb. 45a). Dahingegen weist die CaAC β 7/8 Schleife vom katalytischen Kern weg. Nichtsdestotrotz kann für das katalytisch wichtige R577 (Abb. 44c) eine ähnliche Rotation wie beim geschlossenen tmAC (R1029) gefunden werden (Abb. 45b), woraufhin ein geschlossener Zustand für CaAC angenommen wird.

Zusammengefasst zeigt die 2.25 Å CaAC Struktur einen klassischen Typ III Zyklase Aufbau der enzymatischen Domäne. Die Untereinheiten bilden antiparallel angeordnete Dimere, die jeweils 2 katalytische Zentren an der Dimerisierungs-Schnittstelle beherbergen. Der Ligand ATP-Sp- α S wird durch die zuvor mutierten Reste E497K und C566D in der Bindetasche stabilisiert. Das Vorherrschen und die Ausrichtung der konservierten Reste nahe ATP-Sp- α S erlauben es, einen Typ III Zyklase ähnlichen Reaktionsmechanismus bei CaAC anzunehmen.

3 Diskussion

In dieser Arbeit wurden die neu-artigen Photorezeptoren Rhodopsin-Guanylylzyklasen charakterisiert, die in Pilzen der Abteilung *Blastocladiomycota* entdeckt wurden und zu den Enzym-Rhodopsinen zählen. Anhand unterschiedlicher biochemischer und biophysikalischer Untersuchungen, konnte die Funktionsweise und optogenetische Anwendbarkeit der RhGCs aus *Blastocladiella emersonii* und *Catenaria anguillulae* gezeigt werden.

3.1 Verbreitung der RhGCs

Der Grund warum die multimodularen RhGCs ausschließlich in Pilzen der Abteilungen Blastocladiomycota und Chytridiomycota vorkommen, ist bislang nicht vollständig geklärt. Da dieser Photorezeptor-Typ eine Vereinfachung ("ShortCut") des komplexeren metazoischen Sehprozesses darstellt, könnte man von einer weiteren Verbreitung der RhGCs ausgehen. Pilze (eigener Zweig im "Tree of Life") verfügen über separate Gene für Typ III Zyklasen und mikrobielle Rhodopsine¹, die wenig charakterisiert sind. Entsprechend der Retinal-Bindetasche unterscheidet man bei Letzteren: a) Neurospora ähnliche Rhodopsinen, mit einem verlängerten M-Zustand vergleichbar zu sensorischen Rhodopsinen, b) Leptosphaeria ähnliche Rhodopsinen, die als Protonenpumpen fungieren und c) "Auxilary Opsin-related proteins" ähnliche Rhodopsine, denen zum Teil das Retinal-bindende Lysin fehlt. ^{18,20,209-214}. Interessanterweise besitzen nur Pilze der Abteilung Blastocladiomycota und Chytridiomycota bewegliche Zoosporen, die diesen Pilzen ein phototaktisches Verhalten ermöglicht ²¹⁵. Da die Aktivität der BeRhGC in Zusammenhang mit der Phototaxis steht¹, erklärt sich, warum RhGCs nur in diesen Phyla existieren und nicht weiter innerhalb der Pilze verbreitet sind. In anderen Organismen wird die Phototaxis durch alternative Photorezeptoren initiiert, z.B. durch Kanalrhodopsine bei bestimmten Algen^{67,68,216}, durch sensorische Rhodopsine bei Cyanobakterien und Archaeen²⁸⁻ ³², oder z.B. durch BLUF-basierte Photoaktivierte Adenylat Zyklasen bei Algen und Bakterien ¹⁶⁷. Darüber hinaus ist der Licht-abhängige cGMP Umsatz der Ca/BeRhGCs (Tabelle 1) gegenüber z.B. Ret-GCs 16-105x ²¹⁷ reduziert. Dies und die verminderte Regulations-/Amplifikationsmöglichkeit eines einzelnen Proteins gegenüber eines komplexen Multiprotein-Systems könnten weitere Gründe sein, warum sich RhGCs evolutiv nicht durchgesetzt haben.

3.2 Die Rolle des untypischen N'-Terminus

Neben der einzigartigen C'-terminalen Verknüpfung an eine Guanylylzyklase verfügen RhGCs über einen untypisch verlängerten N'-Terminus, der a) intrazellulär liegt ^{26,27} und b) zwei vorhergesagte Helices (-1,0) umfasst (Ausnahme Am13844). Für Helix -1 kann bei CaRhGC, im Gegensatz zu BeRhGC eine Coiled-Coil Struktur vorhergesagt werden.

Deletionen im N'-Terminus (tr43, tr79) beeinflussen die cGMP Aktivität der RhGCs bzw. führen im Fall von tr139, tr179 zum Funktionsverlust (Abb. 18, Abb. 19, Abb. 20, Abb. 31). Dies deutet daraufhin, dass der N'-Terminus die RhGC Aktivität reguliert. Zumal ein Expressionsnachweis der trunkierten Konstrukte Voraussetzung für die Bestätigung dieser Annahme ist, zeigen die Arbeiten von Trieu et al. die Expression und Inaktivität eines Konstrukts (50 kDa), das N'-terminal um ~200 Aminosäuren verkürzt ist ²⁷. Der Regulationsmechanismus des N^c-Terminus, ist derzeit noch ungeklärt und fortführende Studien werden zeigen, ob eine direkte Interaktion mit der Zyklase Domäne besteht. Weiterhin könnte die N'-terminale Helix -1 bei CaRhGC eine Coiled-Coil Interaktion mit der Linker Helix bilden und eine Dimerisierung des Photorezeptors würde zu einer HAMP-ähnlichen Anordnung der vier Helices führen. Da HAMP Domänen eine wichtige Rolle bei der Signalübertragung innehaben ^{114,115}, könnte diese Anordnung die Aktivierbarkeit der CaRhGC unterstützen (Abb. 47). Bei BeRhGC besteht im Vergleich zu CaRhGC eine kleinere Coiled-Coil Wahrscheinlichkeit der Helix -1. Dies könnte die verminderte enzymatische Aktivität von BeRhGC gegenüber CaRhGC erklären (Abb. 27). Das Einführen von Crosslinks, Mutationen oder der Austausch der N'-Termini, wird zeigen, ob diese Annahme bestätigt werden kann. Bei den restlichen RhGCs AM13844, Am07932, Am09565 konnte keine bzw. nur eine sehr geringe Licht-induzierte cGMP Synthese nachgewiesen werden (Abb. 11) und der N'-Terminus dieser RhGCs unterscheidet sich von Be/CaRhGC (Abb. 10). Dies könnte ein weiterer Hinweis für die regulatorische Funktion des N'-Terminus sein, unter der Voraussetzung eines ähnlichen Expressions-Niveaus dieser RhGCs im Vergleich zu Be/CaRhGC.

3.3 Der Photozyklus der Be/Ca Rhodopsin Domäne

Trotz der untypischen N'-Termini sind die Photozyklen der Be/Ca Rhodopsin Domäne (1-396 AS) ähnlich zu anderen mikrobiellen Rhodopsinen (Abb. 13, Abb. 28) und die Kinetik des Photozyklus kann wie bei ChR2s durch Mutationen des konservierten D/C Paars beeinflusst werden (Abb. 21, Abb. 22). Vergleichbar mit z.B. BR oder ChRs kann die Rotverschiebung des ersten Photointermediats (P₅₈₀ bei BeRh, K₆₀₀ bei CaRh durch eine Retinal-Verdrehung erklärt werden ^{17,18}. Relaxation dieses energetisch angeregten Zustands führt zum blau-absorbierenden L-Intermediat (nur für CaRh gefunden), bei dem die Retinal-Schiffbase protoniert ist ^{17,18}. Die

Bildung des deprotonierten M_{380} -Zustands ist bei Be/CaRh ~1000x verlangsamt im Vergleich zu BR (40 µs) oder ChR2 (4 µs) ^{17,218}. Jedoch erscheinen auch bei anderen mikrobiellen Rhodopsinen z.B. ACRs und HKRs die jeweiligen M-Intermediate erst nach mehreren Millisekunden ^{110,219}. Der Zerfall der M-Intermediate ist bei RhGCs langsam mit tau-Werten von ~100 ms bei BeRh und ~500 ms bei CaRh. Bei BR (5 ms) und ChR2 (10 ms) ist der Abbau des M-Zustands 10-100x beschleunigt ^{220,221}. Der langsame M-Zerfall konnte wie bei SR II genug Zeit für die Aktivierung nachgeschalteter Prozesse geben.

Ob der M-Zustand tatsächlich dem cGMP-bildenden Signalzustand zugeordnet werden kann, ist derzeit noch unklar. Zur Beantwortung dieser Frage, könnten zeitaufgelöste cGMP Messung mittels fluoreszierenden cGMP Sensoren durchgeführt werden und diese mit den spektroskopischen Ergebnissen verglichen werden. Die Anforderungen an den cGMP Sensor sind hierbei eine ausreichende cGMP Sensitivität, eine schnelle Bindungs-/Dissoziations-Kinetik und eine messbare Signaländerung nach cGMP Bindung. Darüber hinaus müssen sich die spektralen Eigenschaften des Sensors von denen der RhGC unterscheiden. Da diese Anforderung für keinen der bestehenden cGMP Sensoren (Cygnet 2.1, cGES-DE5, cGI500/3000/6000, red cGES-DE5) erfüllt ist 222-224, könnte der Signalzustand alternativ mithilfe spektroskopischer Methoden, z.B. FTIR bestimmt werden. Voraussetzung dafür ist die Identifikation eines spezifischen Bandenmusters, das dem Signalzustand eindeutig zugeordnet werden kann. Weiterhin könnte RhGC zusammen mit einem Nukleotid-Analogon im Dunklen bzw. im Licht kristallisiert werden und die Kristallstrukturen würden Aufschluss über konformationelle Änderungen geben. So konnte beispielsweise bei SR II durch einen kristallographischen Ansatz der späte M-Zustand dem Transducer-aktivierenden Signalzustand zugeordnet werden. Hierbei wurde eine Bewegung der Helix 6 und 7 des Rhodopsins festgestellt, die zu einer Aktivierung des Transducers führt ¹⁰⁰. Ähnlich zu SR II sind bei BR ebenfalls große strukturelle Änderungen beim Übergang von M1 nach M2 beobachtbar ^{58–63}. Bei RhGC wird vermutet, dass ebenfalls konformationelle Änderungen die intramolekulare Signalweiterleitung vermitteln. In Übereinstimmung mit SR II wird das M₃₈₀ Intermediat dem cGMP-produzierenden Signalzustand zugeordnet.

Bei CaRhGC ist der Zerfall des M-Zustands im Vergleich zu BeRhGC ~5x verlangsamt. Aufgrund der vorausgegangen Zuordnung bedeutet dies, dass der cGMP produzierende Signalzustand bei CaRhGC über einen längeren Zeitraum besteht. Bei einer andauernden Belichtung (z.B. 2 s) führt dies zu einer verstärkten Akkumulation aktiver Photorezeptoren, da bei einer erneuten Photonenanregung neben den bereits aktiven Proteinen weitere Moleküle in den Photozyklus überführt werden. Ist dahingegen der Photozyklus und die Dauer des M₃₈₀ Zustands kurz, liegen zum Zeitpunkt der erneuten Photonenanregung mehr Photorezeptoren im Dunkelzustand vor und die zuvor beschriebene Akkumulation aktiver Photorezeptoren tritt nicht ein. Dies erklärt die gesteigerte enzymatische Aktivität von CaRhGC im Vergleich zu BeRhGC (Tabelle 1). In anderen Worten ausgedrückt, begründet der verlängerte M-Zustand die erhöhte Enzymaktivität bei CaRhGC verglichen mit BeRhGC. Darüber hinaus könnte auch der gesteigerte Substratumsatz der isolierten *Catenaria* Zyklase verglichen mit BeGC (Tabelle 1) zu der erhöhten cGMP Synthese des Volllängen Konstrukts CaRhGC beitragen.

3.4 Vergleich der Aktivitäten der RhGCs und der isolierten Zyklasen

Vergleicht man die enzymatischen Aktivitäten der belichteten Volllängen-Konstrukte (Be/CaRhGC) und der isolierten Zyklasen (Be/CaGC) fällt auf, dass bei beiden Varianten die Umsatzgeschwindigkeit der konstitutiv aktiven Zyklasen kleiner ist (Tabelle 1). Darüber hinaus führt eine Erweiterung der Zyklase um die Coiled-Coil Helix (CC-GC Konstrukt) zu einer verringerten cGMP Produktion verglichen mit der isolierten Zyklase (Abb. 17f). Im Dunkeln kann für die Volllängen Konstrukte in Oozyten keine bzw. eine sehr geringe cGMP Produktion gemessen werden (Abb. 27i).

Diese Ergebnisse erlauben einerseits den inaktivierenden Einfluss des Rhodopsins bzw. der Coiled-Coil Helix abzuleiten. In anderen Worten bedeutet dies, dass die Rh-CC Domäne im Dunkeln die konstitutive Aktivität der Zyklase blockiert. Generell ist bei Typ III Zyklasen diese Unterdrückung der katalytischen Aktivität durch die vorausgehenden Domänen vorherrschend ^{134,155,225,226}. Andererseits zeigen diese Ergebnisse den aktivierenden Einfluss der Rh/CC Domänen und Belichtung führt zu einem erhöhten Substratumsatz der RhGCs verglichen mit den isolierten Zyklasen. Grund dafür könnte eine Stabilisierung des Dimers und/oder eine konformationelle Beeinflussung des aktiven Zentrums durch die Rh/CC Domäne sein.

3.5 Das optogenetische Potential von Be/CaRhGC

Zusammengefasst zeigt die detaillierte biochemische und biophysikalische Analyse von Be/CaRhGC a) eine mindestens 100-200x Licht-Aktivierbarkeit b) eine schnelle Induktion der cGMP Synthese und eine Rückkehr zum Dunkelzustand im ms Zeitbereich, c) eine sehr geringe Dunkelaktivität, d) die GTP Selektivität dieser cGMP produzierenden Photorezeptoren, sowie e) eine anhaltende und wiederholt induzierbare cGMP-Aktivität. Aufgrund dieser Eigenschaften eignen sich beide RhGCs als optogenetische Werkzeuge zur cGMP. In Übereinstimmung mit den TEVC Messungen in Oozyten (Abb. 27) und der enzymatischen Analyse (Tabelle 1), konnten in Neuronen tendenziell größere cGMP vermittelte Ströme bei CaRhGC im Vergleich zu BeRhGC gemessen werden (Abb. 34). Dies deutet darauf hin, dass sich CaRhGC besser für optogenetische Anwendungen eignet. Das Anfügen eines N^c-terminalen YFP-tags verbesserte das CaRhGC Konstrukt weiter und es wird angenommen, dass der Fluorophor die Expression in hippokampalen Neuronen fördert.

Vor Entdeckung der RhGCs wurde die photoaktivierte Guanylylzyklase BlgC - eine bPAC Trippelmutante - für die Licht-abhängige cGMP Modulation eingesetzt ^{170,227}. Im Gegensatz zu Be/CaRhGC liegt bei BlgC eine cAMP Restaktivität vor. Ein weiterer Nachteil BLUF-basierter Photorezeptoren ist deren Dunkelaktivität und deren langsamer Photozyklus (Sekunden), der einer präzisen optogenetischen Regulation entgegensteht. Darüber hinaus können Rhodopsine im Gegensatz zu BLUF-basierten Zyklasen spektral modifiziert werden. Diese Eigenschaft ist insbesondere bei optogenetischen Anwendungen, bei denen mehrere Licht-absorbierende Proteine z.B. ein Photorezeptor und ein fluoreszierender Sensor kombiniert werden, von entscheidendem Vorteil ²²⁸. Prinzipiell sind auch RhGCs für spektrale Veränderungen zugänglich ²⁷, jedoch gingen die eingeführten Mutationen mit einem substantiellen Aktivitätsverlust einher. Um diesem Effekt entgegenzuwirken, sind weitere Modifikationen der RhGC Konstrukte notwendig.

Zusammenfassend sind RhGCs im Vergleich zu BlgC besser für optogenetische Anwendungen geeignet und derzeit werden RhGCs bei *Toxoplama gondii* eingesetzt, um den Einfluss von cGMP auf das Invasions-/Evasionsverhalten des Parasiten zu untersuchen (Arbeitsgruppe Nishith Gupta, Humboldt-Universität). Weiterhin wird CaRhGC mit cGMP-aktivierten K⁺-leitenden Kanälen kombiniert, um z.B. Schrittmacheraktivitäten im Herzen zu induzieren oder elektrische Transmissionen bei Herz-Fehlleistungen bei Mäusen zu untersuchen (Franziska Schneider, Albert-Ludwigs-Universität Freiburg). Darüber hinaus wird derzeit die Rolle von cGMP bei Fettleibigkeit, Bluthochdruck oder bei der Krebsentstehung untersucht ^{2–7} und eine Licht-induzierte Akkumulation von cGMP könnte helfen, diesbezügliche Fragestellungen zu studieren.

3.6 RhACs

Eine Doppelmutation E497K(β 2)/C566D(β 5) der Rhodopsin-Guanylylzyklasen führte zu Rhodopsin-Adenylylzyklasen (RhACs). Die Licht-abhängige Aktivität der CaRhAC war im Gegensatz zu CaRhGC ~20x verkleinert, während für die isolierten Zyklasen, CaGC/AC, ähnliche cNMP Bildungsraten gemessen wurden (Tabelle 3). Dies zeigt, dass eine Mutation in der katalytischen Domäne den Aktivierungsmechanismus des Volllängen-Proteins beeinflusst und deutet auf eine direkte Interaktion zwischen der Zyklase und der Rh/CC Domäne hin.

Im Gegensatz zu CaRhAC konnte für BeRhAC eine deutlich vergrößerte Dunkelaktivität in Oocyten festgestellt werden (Abb. 36a). Dies könnte auf eine vermehrte Abspaltung einer konstitutiv aktiven BeAC (~25 kDa) hindeuten. Diese Annahme wird von der Beobachtung unterstützt, dass auch die aufgereinigte CaRhAC instabil ist und ein Proteinfragment, das in seiner Größe der isolierten Zyklase entspricht, nachgewiesen werden konnte (Abb. 37b). Aufgrund der reduzierten Dunkelaktivität konnte YFP-CaRhAC in hippokampalen Neuronen zur optogenetischen Kontrolle von cAMP eingesetzt werden, während BeRhAC in Neuronen nicht toleriert wurde (Abb. 39). Generell ist neben der zeitlichen Komponente der subzelluläre Ort für die Regulation intrazellulärer Signalwege entscheidend²²⁹. Unter diesem Gesichtspunkt ermöglicht die Membranständigkeit von CaRhAC eine lokale cAMP Akkumulation nahe der Plasmamembran. Diese Ähnlichkeit zu tmACs kann bei bestimmten Fragestellungen zu einem bevorzugten Einsatz von CaRhAC gegenüber der cytoplasmatischen bPAC führen. Weiterhin ermöglicht das Anhängen von Targeting-Sequenzen Rhodopsine zu bestimmten Organell-Membranen zu dirigieren. Nichtsdestotrotz scheint bPAC in hippokampalen Neuronen das Instrument der Wahl zu sein, wenn große cAMP Mengen bereitgestellt werden sollen (persönliche Kommunikation Christine Gee). Neben bPACs und CaRhAC steht eine Rhodopsin-Chimäre, OptoXR, für die Licht-induzierte cAMP Kontrolle zur Verfügung¹⁸⁵. Belichtung der Chimäre aktiviert das endogene Gs_a , das seinerseits ein allosterischer Aktivator der endogenen tmAC ist. Im Vergleich zu den multimodularen Photorezeptoren CaRhAC und bPAC, ist die Komplexität dieses Multikomponenten-OptoXR Systems und die vermeintliche Aktivierung anderer Signalwege (Arrestin, $G_{\beta\gamma}$) von Nachteil für optogenetische Anwendungen.

3.7 CaAC Kristallstruktur und mechanistische Hintergründe

Die Struktur der isolierten Adenylylzyklase, CaAC, gewährt Einblicke in die katalytische Einheit der Rhodopsin-Zyklasen und gibt Aufschluss über die Spezifitätsänderung (Abb. 42, Abb. 44). In Übereinstimmung zu anderen Klasse III Zyklasen, wird der CaAC Dimer aus antiparallel angeordneten Untereinheiten gebildet. Im Gegensatz zu der CaAC Struktur kristallisierten Be/CaGC als Monomere oder parallel ausgerichtete Dimere, deren Untereinheiten durch eine Disulfidbrücke verbunden sind. Diese Anordnung wurde für BeGC ebenfalls durch Kumar et al ¹⁹⁴ beschrieben. Auf Grundlage dieser Dimer-Struktur diskutierten die Autoren einen alternativen Reaktionsverlauf bei RhGCs, der eine Disulfid-vermittelte parallele Ausrichtung der Untereinheiten miteinbezieht ¹⁹⁴. Dies kann aufgrund der Klasse III ähnlichen CaAC Struktur ausgeschlossen werden. Neben einer antiparallelen Anordnung der Untereinheiten, stimmt das aktive Zentrum von CaAC mit anderen Zyklasen überein und es kann von einem klassischen Verlauf der intramolekularen nukleophilen Substitution bei RhGCs ausgegangen werden.

Im Unterschied zu anderen Liganden-gebundenen ACs (tmAC (PDB 1CJK) oder sAC (PDB 1WC6)) liegt in der Struktur von CaAC kein Ion A vor. Bei diesen Strukturen wird Ion A durch

das α -Phosphat des Liganden und die beiden konservierten Aspartate (D457*, D501* in CaAC) koordiniert. Dahingegen ist bei CaAC der Abstand zwischen einem ähnlich platzierten Ion A und dem α -Phosphat von ATP-Sp- α S vergrößert und somit eine Interaktion erschwert. Darüber hinaus bildet D457* in CaAC eine Salzbrücke zu R545* und ist von Ion A weggedreht.

Ein weiterer Unterschied konzentriert sich auf die Konfiguration des Liganden und im Vergleich zu anderen ACs wird bei CaAC von einer Sp-Konfiguration des ATPaS ausgegangen. Dies ist unüblich, da andere ACs das Sp-Epimer umsetzten ¹²⁷ und folglich im Beisein von ATP-Rp- α S kristallisiert wurden. In den Kristallstrukturen konnte für ATP-Rp- α S keine linearen Anordnung (Ribose Sauerstoffs/ α -Phosphor/O-PP_i) festgestellt werden, die voraussetzend für die Katalyse ist ¹²⁷. Die Autoren folgerten, dass das inhibitorische Potential von ATP-Rp- α S durch ein Abweichen von der linearen Geometrie erklärt wird. Im Umkehrschluss wurde angenommen, dass das Sp-Epimer eine lineare Anordnung bilden kann und folglich umgesetzt wird ¹²⁷. Bei CaAC konnte hingegen ein ähnliches inhibierendes Potential beider Epimere festgestellt werden (Abb. 38e). Weiterhin weicht der ATP-Sp- α S Ligand in CaAC ebenfalls von der linearen Geometrie ab (132 °, ähnlich zu anderen Liganden gebunden ACs) und erfüllt so die Anforderung, die an einen inhibitorischen Liganden gestellt werden.

Neben dem Sp-Epimer und dem Fehlen des Ion A fällt bei CaAC die Stellung der Ribose auf. Im Gegensatz zu anderen Liganden-gebundenen ACs - mit Ausnahme einer Ca²⁺ gebundenen AC (PDB: 3MAA) - ist die Ribose orthogonal zur Adeninbase ausgerichtet. Dies führt zu Wasserstoffbrückenbindungen zwischen der 2'OH/3'OH Gruppe der Ribose und der $\beta 2/3$ Schleife (Abb. 44). Gleichsam entfernt sich der Ribosering-Sauerstoff von N573 und steht nicht mehr für eine Interaktion mit dem konservierten Asparagin zur Verfügung. Diese Wasserstoffbrückeninteraktion ist bei tmAC wichtig für die Katalyse¹²⁴. Die Ursache der Ribose Drehung könnte auf das fehlende Ion A zurückzuführen sein, das in tmAC die Rotationsfreiheitsgrade der Ribose einschränkt. Andererseits könnte spekuliert werden, dass die gedrehte Ribose ein Intermediat des Reaktionsverlaufs darstellt. In Übereinstimmung mit dieser Annahme, zeigten quantenphysikalische Berechnungen (Dichtefunktionaltheorie) die Bewegung der Ribose während der Katalyse²³⁰. Um dies zu klären und für ein mechanistisches Verständnis der katalytischen Reaktion, müssten weitere Liganden-gebundene CaAC Strukturen entlang der Reaktionskoordinate generiert werden. Darüber hinaus stellt sich die Frage wie a) die Rhodopsin/Coiled-Coil Domäne die konstitutiv aktive Zyklase im Dunkeln inaktiviert, b) das Aktivierungssignal von der photosensorische Rhodopsin Domäne über die Coiled-Coil Helix zur katalytischen Untereinheit weitergeleitet wird und c) wie in diesem Zusammenhang die Aktivitätssteigerung der katalytischen Einheit im Volllängen-Konstrukt erklärt werden kann.

3.8 Der intramolekulare Signalweg

Um Annahmen bezüglich des intramolekularen Signalwegs zu treffen, wird von einer konstitutiven Homodimerisierung bei RhGCs ausgegangen, wie sie bei anderen Typ III Zyklasen vorherrscht ^{124,134,155,162,164,225}. Dies wird unterschützt durch BeRhGC Gelfiltration-Elutionsprofile, die auf eine Licht-unabhängige Homodimerisierung hindeuten (persönliche Kommunikation Matthias Broser). Darüber hinaus konnte unter Raumlicht ein CaRhGC Dimer bei einer nativen Gelelektrophorese beobachtet werden (persönliche Kommunikation Shatanik Mukherjee). Eine dauerhafte Dimerisierung erklärt auch die Licht-unabhängige Aktivität der CaRhCC-(AC)_{bPAC} Chimären, zumal die isolierte AC von bPAC nicht konstitutiv aktiv ist und eine Dimerisierung essentiell für die Funktion der Zyklase ist ¹⁷⁵. Der Grund für die Inaktivität der analogen OaPAC Chimäre ist unklar.

Um Hinweise über eine intramolekulare Signalweiterleitung zu erhalten, zeigt ein Vergleich zu anderen Enzym-Rhodopsinen, dass wenig über die signalübertragenden Mechanismen bei dieser Rhodopsin Klasse bekannt ist. Während bei HKR1 weder eine Licht- noch eine Dunkelabhängige Enzymaktivität festgestellt wurde ^{106,108–110}, besteht bei RhoPDE eine Dunkelaktivität und Belichtung führt zu einem ~6x reduzierten K_M und einer Zunahme des v_{max} um 30 % ^{111–113} . Es wird davon ausgegangen, dass die Linker HAMP Domäne an der Übertragung des Signals zwischen dem Rhodopsin und der Phosphodiesterase beteiligt ist ¹¹². Generell wurden für HAMP Domänen folgende Übertragungsmechanismen beobachtet, die in einer Aktivierung der Effektordomäne resultieren: Induktion einer kolbenartigen Verschiebung^{231–233}, einer axialen Drehung ^{234,235} oder eine Bewegung, die dem Öffnen einer Schere ähnelt ²³⁶. Obgleich die Dynamik der HAMP Domäne bei Rho-PDE unbekannt ist, wird in Analogie zu SR II angenommen, dass das Rhodopsin durch eine auswärts gerichtete Bewegung der Helix 6 und 7 die Signalübertragung an die HAMP Domäne weiterleitet ¹¹². Ähnlich zu SR II wird vermutet, dass die Helix 6/7 Bewegung mit dem Zerfall des M-Zustands korreliert¹¹². Die Bewegung dieser Helices wird bei SR II durch ein verändertes Wasserstoffbrückennetzwerk insbesondere zwischen Helix 3 und 7 ermöglicht, das durch die Retinal-Isomerisierung beeinflusst wird ^{100,237}. Weiterhin wird bei SR II davon ausgegangen, dass der SR II/Transducer Komplex im Grundzustand in einer "U" Form und im aktivierten M-Zustand in einer "V" Form vorliegt ²³⁷. Bezüglich der 2. Helix des Transducers wurde im späten M-Zustand eine 15° Rotation an der cytoplasmatischen Seite und eine kolbenartige Verschiebung (0.5 Å) beobachtet ^{100,237}. Der Mechanismus, wie die Rhodopsin Helices 6/7 die Bewegung des Transducers beeinflussen, ist noch unklar. Aufgrund des SR II ähnlichen Photozyklus wird für RhGC ebenfalls eine Bewegung der Rhodopsin Helix 6/7 während der Signalweiterleitung angenommen. Im Unterschied zu SR II würde diese Bewegung über die direkt verknüpfte Coiled-Coil Domäne an die enzymatische Domäne weitergeben werden. Hierbei würde eine kleine Rotationsbewegung der Rhodopsin Helices aufgrund des Hebeleffekts zu einer großen Bewegung der Coiled-Coil Enden und damit der katalytischen Domänen führen.

Um weitere Hinweise über die Signalübertragung zu erhalten, werden diesbezügliche Mechanismen im Folgenden bei nicht Rhodopsin-basierten Zyklasen analysiert. Ähnlich zu RhGC wird bei den membranständigen tmACs und pGCs die konstitutive Aktivität der Zyklase Domäne unterdrückt. Die Bindung eines Liganden (Gs oder natriuretische Peptide) löst diese Blockade und ermöglicht die cNMP Produktion. Bei tmAC wird vermutet, dass die Bindung des aktivierenden G-proteins (Gs_a(GTP)) eine 7° Rotation der katalytischen C1 Domäne induziert und damit zu einer kompakteren katalytischen Einheit führt ^{124,238}. Dies geht mit einer leichten Verschiebung der $\alpha 1$, $\alpha 2$, $\alpha 3$ Helix und des $\beta 4$ Stranges der Zyklase einher ($\beta 7/8$ kann bei PDB: 1AB8 nicht modelliert werden). Es wird angenommen, dass diese veränderte Domänen-Orientierung die katalytische Einheit in ihren aktiven Zustand überführt ^{124,238}. Bei den Hormon-bindenden pGCs wird ähnlich zu tmACs angenommen, dass die Bindung des Liganden (natriuretische Peptide) eine konformationelle Änderung innerhalb der extrazellulären Domäne initiiert, die zu einer 24° Rotation des extrazellulären juxtamembranären Moduls führt ^{239,240}. Es wird vermutet, dass diese Rotation über die einzelnen transmembran-Helices bis an die terminale Guanylylzyklase weitergegeben wird 240-242. Weiterhin wurde eine intrazelluläre Bindung von ATP in der Nähe der Membran und eine Phosphorylierung der Kinase-ähnlichen Domäne als essentiell für die Aktivierung der katalytischen Einheit gesehen ^{135,242–244}. Bei beiden membranständigen Zyklasen basieren die bisherigen Erkenntnisse auf Teilstrukturen. Weder für tmAC noch pGC konnte bisher eine Struktur des gesamten Rezeptors zusammen mit dem Aktivator generiert werden. Nichtsdestotrotz könnte bei RhGCs ein tmAC/pGC ähnliches Rotations-Szenario vorherrschen. Im Dunkeln würde die Rhodopsin/Coiled-Coil Domäne eine katalytisch ungünstige Orientierung der Zyklase Einheiten stabilisieren. Belichtung würde eine Rotation der Untereinheiten auslösen und könnte zu einer optimalen Ausrichtung der Reste des aktiven Zentrums führen. Dieses Modell würde auch die erhöhte Umsatzgeschwindigkeit und den erniedrigte K_M-Wert der Be/Ca Volllängen Konstrukte gegenüber den isolierten Be/Ca Zyklasen erklären (Tabelle 1).

Im Gegensatz zu den membranständigen Zyklasen existieren Volllängen-Strukturen bei den cytoplasmatischen Zyklasen und eine Kristallisation der homodimeren mykobakteriellen Adenylylzyklase RV1264 in unterschiedlichen Zuständen erlaubte, den Aktivierungsmechanismus dieser Zyklase zu entschlüsseln. Essentiell ist hierbei eine ungeordnete Linker-Region zwischen der N'-terminalen pH-Sensor Domäne und der C'-terminalen Zyklase ¹³¹. Ein Absenken des pH inaktiviert RV1264 und überführt den Linker in eine geordnete Helix. Damit einhergehend erfolgt eine 55° Rotation der Zyklase Einheiten, die nun mit der pH-Sensor Domäne interagieren. Ein analoger Mechanismus ist bei RhGCs
unwahrscheinlich, da davon auszugehen ist, dass der Linker aufgrund des Heptadenmusters auch im Dunklen eine helikale Coiled-Coil Struktur bildet.

Neben dieser mykobakteriellen AC wurde die Struktur der NO-bindenden GC (Heterodimer) mithilfe der Cryo-Elektronenmikroskopie gelöst ¹⁴⁵. Die Mechanismen der NO-induzierten Aktivierung werden trotz dieser Struktur kontrovers diskutiert ^{143,145}. Unter anderem wurde eine große strukturelle Dynamik der einzelnen Domänen beobachtet und diese in Zusammenhang mit der enzymatischen Aktivierbarkeit gesetzt ¹⁴⁵. Eine ähnliche Inter-Domänen-Flexibilität ist aufgrund der Membranständigkeit bei RhGCs unwahrscheinlich.

Darüber hinaus existieren Volllängen-Kristallstrukturen der Photoaktivierten Zyklasen, bPAC und OaPAC, die bezüglich der Zyklase ähnlich zu RhGC aufgebaut sind. Die Rhodopsin Domäne ist bei beiden PACs durch eine lösliche BLUF Domäne ersetzt, auf die eine Coiled-Coil, ein CTE und eine Zyklase Domäne folgt (Abb. 33b). Von beiden PACs wurden Strukturen des Dunkelzustands und des Licht-aktivierten Zustands generiert, die eine Homodimerisierung des Rezeptors zeigen. Ob die Licht-aktivierten Strukturen den jeweiligen Photorezeptor in der aktiven Form darstellen, ist unklar, da ein gebundenes Nukleotid-Analogon bei keiner der Strukturen vorliegt. Nichtsdestotrotz werden für OaPAC und bPAC Licht-abhängige Signalübertragungsmechanismen formuliert, die sich jedoch unterscheiden. Bezüglich des Übergangs zwischen der Coiled-Coil Helix und der katalytischen Domäne wird bei OaPAC angenommen, dass die Weiterleitung des Aktivierungssignals auf vibrationelle Schwingungsänderungen zurückzuführen ist, die strukturell nicht nachweisbar sind ^{168,181}. Dahingegen konnte bei bPAC eine Licht-induzierte Bewegung der $\beta 4/5$ Schleife ("tongue") bei Hydrogen-Deuterium-Austausch Experimenten und bei Licht-adaptierten Kristallstrukturen beobachtet werden ¹⁷⁵ (Anhang Abb. 52). Laut den Autoren induziert die β 4/5 Bewegung eine a) relative Öffnung der katalytischen Untereinheiten und b) eine Repositionierung und damit "Befreiung" der Nukleotid-bindenden Reste (K197, T267). Hierbei wurde die Licht-induzierte Verschiebung von H266 (β 5) zu N257 als wichtig angesehen, die ihrerseits T267 zu ATP ausrichtet (Anhang Abb. 52). Diesem Aktivierungsmodell ist hinzuzufügen, dass sich die β 4/5 Schleifen des Partnermonomoers jeweils zwischen der Coiled-Coil Helix und der katalytischen Untereinheit bewegen. Diese Verzahnung der beiden Untereinheiten ermöglicht eine Synchronisation beider Untereinheiten und erhöht die Sensitivität gegenüber kleiner Veränderungen im Coiled-Coil Bereich.

Bei der CaAC Struktur wurden die $\beta 4/5$ Schleifen ebenfalls in zwei unterschiedlichen Orientierungen vorgefunden (Abb. 43). Eine Flexibilität in dieser Region lag auch bei den Liganden-freien GC Strukturen vor. Prinzipiell könnte die Bewegung der $\beta 4/5$ Schleifen die Position des Nukleotid-bindenden Rests (AS 566) auf $\beta 5$ beeinflussen. Eine tatsächliche

94

Positionsänderung dieses Rests (C566D) konnte jedoch bei keinem der CaAC Monomere beobachtet werden (Abb. 43). Dahingegen geht eine Verschiebung von H564 mit der β 4/5 Bewegung einher, wodurch eine Wasserstoffbrücke zwischen H564 und C566D ermöglicht wird (Abb. 43). Dieser indirekte Effekt könnte somit den Einfluss der β 4/5 Bewegung auf die Nukleotid-Bindung vermitteln. Zusammenfassend deutet dies darauf hin, dass ähnlich zu bPAC eine β 4/5 Bewegung an der intramolekularen Signalübertragung beteiligt sein könnte.

Der Mechanismus, wie eine $\beta 4/5$ Bewegung ausgelöst wird, ist unverstanden. Jedoch zeigt eine Analyse von bPAC, OaPAC und Cya AC^{ix} (und AC10), dass Interaktionen zwischen dem vorhergehende CTE Element und der $\beta 4/5$ Schleife bestehen (Abb. 46, Anhang Abb. 53), die theoretisch eine Signalweiterleitung vermitteln könnten. Der Kontakt zwischen dem CTE Motiv und der Zyklase Domäne wird bei diesen Zyklasen hauptsächlich durch Wasserstoffbrücken und/oder elektrostatische Wechselwirkungen vermittelt (Anhang Abb. 53). Hierbei interagieren Aminosäuren des CTEs mit Aminosäuren des $\beta 2$ Strangs bzw. der $\beta 4/5$, $\beta 4/5$ * Schleifen der Zyklase Domäne (Anhang Tabelle 24). Die involvierten Aminosäuren unterscheiden sich unter den einzelnen Zyklasen. Dies könnte die Inaktivität der CaRhCC-(AC)_{OaPAC} Chimäre erklären. Bei dieser Chimäre wurde CaRhCC (bis P430) mit der Zyklase Domäne von OaPAC (ab P128) fusioniert. Durch diese Kombination würde z.B. eine Wasserstoffbrücke zwischen CTE (Y125) und Zyklase (N256), die bei OaPAC vorherrscht, nicht mehr existieren.

Um die Bedeutung des CTEs für die RhGC Funktion nachzuweisen, wurde das zentrale Prolin (P430) ausgetauscht oder deletiert und beide Mutationen inaktivierten den Photorezeptor bei wtähnlicher Expression (Abb. 33). Darüber hinaus wurden bei OaPAC (und bei bPAC) einzelne Aminosäuren der CTE/Zyklasen Interaktion mutiert und eine Licht-abhängige enzymatische Aktivität war bei den OaPAC Mutanten N256A und Y125A nicht mehr nachweisbar ^{168,175}. Dieses Ergebnis deutet daraufhin, dass der CTE/Zyklasen Kontakt wichtig für die intramolekulare Signalweiterleitung ist. Unter diesem Gesichtspunkt könnte auch die Inaktivität der Am07932 RhGC erklärt werden (Abb. 11). Im Vergleich zu Be/CaRhGC ist bei dieser RhGC der Abstand zwischen CTE und Zyklase um 28 Aminosäuren verlängert. Dies könnte die CTE/Zyklasen Interaktion und damit die Signalweiterleitung beeinflussen.

^{ix} Cya AC = AC aus *Mycobacterium intracellulare* 1956

E194(β2)

N257 (β4/5)

S261

(B4/5)*

K263

(β4/5)*

K179

(B2)

(a) Sequenz-Vergleich (ClustalOmega) von Be/CaRhGC mit verschiedenen Zyklasen im Bereich des CTEs, der $\alpha 2 - \beta 2$ Schleife und der $\beta 4 - \beta 5$ Schleife. Der rote Stern markiert das konservierte Prolin des CTEs. Die Nukleotid-bindenden Reste sind mit einem roten Plus gekennzeichnet. (b) Interaktionen zwischen dem CTE Motiv und der Zyklase Domäne bei bPAC nach Belichtung des Photorezeptors (PDB: 5MBE). Die an der Interaktion beteiligten Aminosäuren sind hervorgehoben. Aminosäuren (K179/T267), die theoretisch mit der Nukleotidbase interagieren sind rot geschrieben. Der Stern markiert das Partner-Monomer. CTE = Zyklase Transducer Element.

Um die Frage zu klären, ob bei RhGC PAC-ähnliche CTE/Zyklasen Kontakte vorliegen, wurden die Sequenzen unterschiedlicher Zyklasen verglichen (Abb. 46). Der Sequenz-Vergleich zeigt Unterschiede im CTE und der Zyklase Segmente $\alpha 2 - \beta 2$, sowie $\beta 4 - \beta 5$ bei RhGCs. Da keine Kristallstruktur einer CC-umfassenden Be/CaGC existiert, wurden die CTE/Zyklasen-Kontakte mittels eines theoretischen CaCC-GC Modells (SwissProt, Anhang Abb. 53) abgeschätzt, das auf dem hoch-aufgelösten OaPAC (PDB: 4YUS) beruht. Bei diesem CaCC-GC Modell besteht ein größerer Abstand zwischen dem CTE und der Zyklase verglichen mit den PACs (Anhang Abb. 53). Nichtsdestotrotz könnten auch bei RhGC Wasserstoffbrücken und

96

elektrostatische Wechselwirkungen eine Domänen-Interaktion vermitteln (Anhang Tabelle 24). Das Einführen von Crosslinks oder Mutation wird Aufschluss über die CTE/Zyklase Wechselwirkungen und deren Rolle bei der Signalweiterleitung bei RhGC geben. Interessant wäre zudem die Substitution von L561(β 4/5)* durch ein Aspartat, um eine weitere elektrostatische Wechselwirkung zwischen dem Ende der Coiled-Coil Helix (K427) und (β 4/5)* zu generieren (Anhang Abb. 53).

Zusammenfassend wird angenommen, dass das CTE Segment eine Bewegung der $\beta 4/\beta 5$ Schleife induziert und dadurch das intramolekulare Signal von der Coiled-Coil Domäne an die Zyklase weitergeleitet wird. Ob es hierbei zu einer Begradigung des CTE Segments kommt, wie durch Ziegler et al. ¹⁵² vorgeschlagen, kann nicht ausgeschlossen werden. Aufgrund der Helixbrechenden Eigenschaft des Prolins erscheint dies jedoch als unwahrscheinlich.

3.8.1 Hypothese über die intramolekulare Signalweiterleitung bei RhGCs

Abschließend für die vorausgegangenen Ergebnisse und Vergleiche, zeigt Abb. 47 einen hypothetischen Signalübertragungsweg bei RhGC. Voraussetzend für diesen ist eine konstitutive RhGC Homodimerisierung. Im Dunkeln würde die Rh-CC Domäne die konstitutiv aktive Zyklase in einer inaktiven Konformation stabilisieren, indem die Untereinheiten in einer katalytisch ungünstigen Drehung zueinanderstehen und die katalytischen Reste keine optimale Positionierung des Substrats zulassen. Grünbelichtung initiiert den Photozyklus und würde beim Zerfall des M-Intermediats zu einer Auswärtsdrehbewegung der Rhodopsin Helix 6 und 7 führen (Abb. 47, Nummer 1). Diese Bewegung könnte durch die Coiled-Coil Helix an die katalytische Domäne übersetzt werden (Abb. 47, Nummer 2) und einerseits eine Rotation der Zyklase Untereinheiten bewirken, die mit einer funktionalen Gegenüberstellung der Zyklase Untereinheiten einhergeht (Abb. 47, Nummer 3). Andererseits könnte die Stellung des CTEs und damit die CTE/Zyklase Interaktion beeinflusst werden (Abb. 47, Nummer 4a). Dies könnte eine Bewegung der $\beta 4/5$ Schleifen induzieren (Abb. 47, Nummer 4b), die sich auf die Reste der Substratbindetasche auswirkt. Insgesamt würden die Licht-abhängigen Rh-CC vermittelten Effekte eine katalytisch optimale Substratpositionierung ermöglichen. Zusammen mit der Stabilisierung des katalytischen Dimers würde dies den erhöhten Substratumsatz und die erhöhte Substrataffinität der Volllängen RhGCs gegenüber der isolierten Zyklasen erklären (Tabelle 1).

Abb. 47 Skizzierung eines hypothetischen Aktivierungsmechanismus bei RhGC

Gezeigt ist RhGC vor Belichtung (links), bei Belichtung (Mitte) und nach Belichtung (rechts). Licht wird durch die Rhodopsin Domäne wahrgenommen und führt während des späten M-Zustands zu einer Auswärtsdrehbewegung der Helix 6 und 7 (Nr. 1). Diese Bewegung könnte einerseits über den Coiled-Coil Linker (Nr. 2) an die Zyklase Domäne weitergeben werden (Nr. 3) und eine funktionale Gegenüberstellung der katalytischen Zentren bewirken. Andererseits könnte die Stellung des Zyklase-Transducer-Elements (CTE) beeinflusst werden (Nr. 4a) und dadurch eine Bewegung der β 4/5 Schleifen (Nr. 4b) induziert werden. Letztere könnte die Position bzw. das Wasserstoffbrückennetzwerk der Nukleotid-bindenden Reste beeinflussen und final den katalytischen Umsatz von GTP erlauben. Der Linker könnte Licht-unabhängig durch eine Coiled-Coil Interaktion mit der N'-terminalen Helix -1 stabilisiert werden.

3.8.2 Ausblick

Zur Überprüfung des hypothetischen Aktivierungsmodells müsste idealerweise die GTP-Volllängen Strukturen der Dunkelund Licht-adaptierten gebundene RhGC röntgenkristallographisch/elektronenmikroskopisch/NMR-spektroskopisch gelöst werden. Hierbei ist anzumerken, dass die Kristallisation eines Membranproteins noch immer herausfordernd ist und die Größe des RhGC Dimers ein Hindernis bei NMR Analysen (idealerweise <40 kDa) und elektronenmikroskopischen Aufnahmen sein könnte (idealerweise >100 kDa). Des Weiteren könnten mithilfe von SAXS^x weitere Informationen bezüglich der Coiled-Coil/Zyklasen Anordnung generiert werden (Auflösungsbereich ~10 Å).

Um die Dynamik der Signalübertragung z.B.: die Coiled-Coil Bewegung nachzuvollziehen, könnten - ähnlich zu SR II - FTIR oder EPR Messungen mithilfe spezifisch markierter Reste durchgeführt werden ^{245–247}. Analog zu Signalweiterleitungsstudien bei sGC könnten fluoreszierende Deoxy-Mant-GTP Derivate benutzt werden ²⁴⁸, die zusammen mit natürlichen Tryptophan Resten als FRET-Paar fungieren, um z.B. Interaktionen zwischen dem N^c-Terminus und der katalytischen Domäne aufzuklären. Alternativ zu anderen Studien an sGC könnte ein FRET Paar am N^c- und C^c-Terminus der RhGC angehängt werden, um Domänen-Interkationen/-Dynamiken festzustellen ²⁴⁹. Weiterhin könnten chemische Crosslinks in RhGC

^x SAXS = Small angle X-ray scattering

eingebracht werden ¹⁴³, um die Inter-Domänen-Kontakte zu ermitteln (Rh zu CC/ Rh zu Zyklasen/ CC zu Zyklase). Vergleichbar mit Studien an PACs könnten Hydrogen-Deuterium-Austausch-Experimente durchgeführt werden, um durch die Lösemittel-Zugänglichkeit auf die Domänen-Flexibilität/-Interaktion rückzuschließen ^{175,181}. Ergänzend könnten weitere Mutationen in z.B. das CTE Motiv oder die β4/5 Schleifen eingefügt werden, um wichtige Reste der Signalübertragung zu identifizieren.

Des Weiteren könnte spektroskopisch untersucht werden, ob die Zyklase Domäne Einfluss auf den Photozyklus nimmt. Mithilfe der Raman-Spektroskopie oder FTIR Spektroskopie könnten zudem tiefere Einblicke über den Photozyklus, die Chromophor-Identität und über konformationelle Änderungen vor allem in der Nähe des Chromophors generiert werden. Die FTIR Experimente könnten zusätzlich mit "caged"-GTP Derivaten kombiniert werden, die zu einem gewählten Zeitpunkt spezifisch mit UV-Licht aktiviert werden. Somit könnte ein spezifisches Bandenmuster des Signalzustands erfasst werden und die Bildung/der Zerfall des Signalzustands zeitaufgelöst nachvollzogen werden.

Darüber hinaus könnte überprüft werden, ob Spannungsänderungen die RhGC Aktivität beeinflussen, ähnlich zu einer tmAC aus dem Ciliaten Paramecium²⁵⁰. Dies kann mithilfe eines elektrophysiologisches Setups und eines fluoreszierenden cNMP Sensors getestet werden. Die Voraussetzung für eine Spannungsabhängigkeit, d.h. die Wahrnehmung von Potentialdifferenzen ist eine Lokalisation des Proteins in der Membran. Das Vorliegen eines Spannungssensors bei RhGC würde somit erklären, warum ein Rhodopsin - und nicht etwa eine cytoplasmatische BLUF Domäne - bei RhGC als photosensorisches Element fungiert. Neben mechanistischen Funktionsanalysen könnten RhGCs für optogenetische Anwendungen weiter optimiert werden. Im Fokus stehen hierbei die Verbesserung der Expression, sowie die Modulation der Kinetik und Absorptionseigenschaften. Darüber hinaus könnten weitere Mutationen in die ATP-spezifischen RhACs eingebracht werden, um deren Licht-abhängige Aktivität zu verbessern und Dunkelaktivität zu vermindern. Zudem können RhGCs/RhACs mit cNMP-aktivierten Kanälen kombiniert werden, um z.B.: zusammen mit einem modifizierten cGMP-aktivierten K⁺ leitenden STHK^{xi} Kanal eine Hyperpolarisation von Neuronen auszulösen. Um diese multi-komponenten Systeme optogenetisch einzusetzen, ist eine Feinabstimmung der einzelnen Komponenten erforderlich.

Abschließend für diesen Ausblick und für diese Arbeit kann festgestellt werden, dass die Charakterisierung von Be/CaRhGC wichtige Grundsteine für das Verständnis dieser neuentdeckten und einzigartigen Photorezeptoren erbrachte. Nichtsdestotrotz bedarf es weiterer Forschung, um die Funktionsweise der RhGCs im Detail zu verstehen und das optogenetische Potential dieser Photorezeptoren in Gänze auszuschöpfen.

^{xi} STHK = bakterieller cyclic nucleotide-gated K⁺ Kanal aus *Spirochaeta thermophila*

4 Methoden

4.1 Zugangsnummern

Die Sequenzen von BeRhGC und CaRhGC sind bei der NCBI hinterlegt: BeRhGC: gb AIC07007.1, CaRhGC: gb MF939579. Die Sequenzen der restlichen AmRhGCs sind über die Zusatzinformation in Avelar et al. zugänglich ¹. Die Sequenzen der verkürzten RhGCs aus *Rhizoclosmatium globosum* (Rg) und *Globomyces pollinis-pini* (Gp) (Abteilung *Chytridiomycota*) sind in der "jgi" Datenbank zu finden: GpRhGC_618394(gm1.2182_g), RgRhGC_559232(CE559232_26255), RgRhGC_781511(gm1.2695_g), RgRhGC_847233 (estExt_Genemark1.C_80214). Die Koordinaten und das Streubild der CaAC Kristallstruktur sind in der Protein Data Bank <u>www.pdb.org</u> hinterlegt, unter PDB: 50YH.

4.2 Molekularbiologie

4.2.1 Gene und Vektoren

Die Vektoren (mit zugehörigen Restriktionsschnittstellen) sind unter den jeweiligen Abschnitten angegeben. Im Folgenden wird auf die Klonierungsstrategie eingegangen, die für die Generierung von pGEM-basierten Konstrukten (TEVC Oocyten) oder pET21-basierten Konstrukten (Expression Zyklasen) angewendet wurde.

4.2.2 Kompetente E.coli Zellen

500 ml LB Medium wurden mit einer Übernacht-Vorkultur kompetenter XL1-Blue Zellen (Agilent) angeimpft (2 ml) und bis zu einer $OD_{600} = 0.5$ bei 37°C kultiviert (180 RPM). Nach Abkühlen auf Eis (15 min) und Zentrifugation (10 min, 3000 g JLA-8100 Rotor (Beckmann Zentrifuge), 4 °C) erfolgte die Resuspension des Zellpellets in 150 ml Tfbl-Puffer (30 mM Kaliumacetat, 50 mM MnCl₂, 100 mM RbCl, 2 mM CaCl₂, 15 % (V/V) Glycerin, pH 5.8) und eine Inkubation auf Eis (30 min). Nach erneutem Zentrifugieren (10 min, 3000 g, 4 °C, JS-5.3 Rotor (Beckmann Zentrifuge)) wurde das Zellpellet in 3.3 ml eiskaltem TfbII-Puffer resuspendiert (10 mM MOPS, 10 mM RbCl, 75 mM CaCl₂, 15 % (V/V) Glycerin, pH 6.8) und aliquotiert (50 µl). Die Aliquots wurden bei -80 °C gelagert.

4.2.3 Gelelektrophorese zur Trennung von DNA Fragmenten

DNA Fragmente wurden zusammen mit 5 μ l SYBR Green 10x (Thermo Scientific) und 5 μ l FastDigest Puffer 10x (Thermo Scientific, wurde hier als Ladepuffer genutzt) auf ein Agarose-Gel (1 %, Roth) aufgetragen. Die Gelelektrophorese wurde mit TAE-Puffer (40 mM Tris, 0.001142% (V/V) reine Essigsäure, 50 mM Na₂EDTA * 2H₂O, pH 8.3, Roth) bei 120 V durchgeführt. Die Größe der DNA-Fragmente wurde mithilfe eines DNA-Markers (6 μ l O'GeneRuler DNA Ladder Mix, Thermo Scientific, gemischt mit 6 μ l SYBR Green 10x) unter Blaulicht abgeschätzt.

4.2.4 Generierung neuer DNA Konstrukte mithilfe von Restriktionsenzymen

Die jeweilige Gensequenz wurde durch eine PCR mit spezifischen Primer vervielfältigt (Insert-PCR). Den spezifischen Restriktionsschnittstellen (5[°], 3[°]) der Primer ging eine unspezifische ATA Sequenz voraus, die Überlappung der Primer mit der Ziel-DNA betrug ~23 Basenpaare und die Primer endeten auf Cytosin oder Guanin. Die Primer wurden durch die Firma IDT hergestellt.

Tabene 5 Insert I CK	
Finales Ansatzvolumen	50 µl
dNTP-Mix (2 mM) (Thermo Scientific)	5 μl
10x ReproFast PCR Puffer (Genaxxon)	5 μl
Vorwärts-Primer (10 μM)	1.5 μl
Rückwärts-Primer (10 μM)	1.5 μl
Max 50 ng Template DNA	
ReproFast DNA Polymerase (Genaxxon)	0.5 μl

Tabelle 5 Insert-PCR

rabene o Insert-PCR, 29x wiederholung der Schritte 2 - 4									
Schritt	Temperatur	Dauer							
1	94 °C	5 min	Anfängliche Denaturierung						
2	94 °C	30 s	Denaturierung						
3	55 °C	15 s	Annealing der Primer						
4	72 °C	Entsprechend der Fragment- Größe (1 kB/min)	Elongation						
5	94 °C	30 s	Terminale Denaturierung						
6	72 °C	10 min	Terminale Elongation						

Tabelle 6 Insert-PCR, 29x Wiederholung der Schritte 2 - 4

Das PCR-Produkt wurde zusammen mit 5µl SYBR Green 10x (Thermo Scientific) und 5 µl FastDigest Puffer 10x (Thermo Scientific) auf ein Agarose-Gel (1 %, Roth) aufgetragen. Die jeweiligen Fragmente wurden mithilfe des PCR-Cleanup Kits (Macherey-Nagel) entsprechend der Herstellerangaben aufgereinigt. Die finale Elution erfolgte mit 15 µl des Elutionspuffers. Zu

diesem Ansatz wurden jeweils 2 μ l der beiden Restriktionsenzyme (FastDigest, Thermo Scientific) hinzugefügt, sowie 3 μ l des FastDigest Reaktionspuffers 10x (Thermo Scientific). Der Ansatz wurde auf 30 μ l Gesamtvolumen mit Wasser aufgefüllt. Nach einer Inkubation über 30 min bei 37 °C wurden die Reaktionsprodukte mithilfe des PCR-Cleanup Kits (Macherey-Nagel) entsprechend der Herstellerangaben aufgereinigt. Die finale Elution erfolgte wiederum mit 15 μ l des Elutionspuffers.

Um die vervielfältige Gensequenz in einen Vektor zu integrieren, wurde ein bestehender Vektor (z.B. pGEM) gemäß dem nachfolgenden Protokoll mithilfe der jeweiligen Restriktionsenzyme (5[°], 3[°]) geschnitten.

Tabelle 7 Vektor Verdau 50 00 mill 57 C	
Finales Ansatzvolumen	30 µl
2500 ng Vektor	
Restriktionsenzym 5' (FastDigest Thermo Scientific)	2 μl
Restriktionsenzym 3' (FastDigest Thermo Scientific)	2 μl
Alkalische Phosphatase (Thermo Scientific)	2 μl
10x FastDigest Reaktionspuffer (Thermo Scientific)	3 µl

Tabelle 7 Vektor-Verdau 30 - 60 min 37 °C

Nach einer Inkubation über 30 min - 1 h bei 37°C wurde der Ansatz auf ein Agarose-Gel (1%, Roth) zusammen mit 5µl SYBR Green 10x (Thermo Scientific) und 5 µl FastDigest Puffer 10x (Thermo Scientific) aufgetragen. Zur Kontrolle des Schnitts wurde ungeschnittener Vektor ebenfalls auf das Gel aufgetragen. Das Rückgrat des geschnittenen Vektors wurde mithilfe des PCR-Cleanup Kits (Macherey-Nagel) nach Herstellerangaben aufgereinigt. Die Elution erfolgte mit 15 µl Elutionspuffer.

Die Konzentration des geschnittenen Vektors und des vervielfältigen Gens wurde im Anschluss an die Aufreinigungen bestimmt und die Ligation wurde nach folgendem Protokoll durchgeführt.

Tabelle 8 Ligation, 30 min 22 °C

Finales Ansatzvolumen	20 µl
50 – 100 ng geschnittener Vektor (Rückgrat)	
4.5x Überschuss (in ng) geschnittenes Insert	
10x Ligationspuffer (Thermo Scientific)	2 μl
Ligase (Thermo Scientific)	1 μl

4.2.6 Generierung neuer DNA Konstrukte mithilfe der ortsgerichteten Mutagenese

Um Aminosäuren zu mutieren/deletieren wurden die Gene einer ortsgerichteten Mutagenese (QuikChange Site-Directed Mutagenesis Kit, Agilent) im Beisein spezifischer Primer unterzogen. Beim Austausch einer einzelnen Aminosäure überlappte der Primer mit der Gensequenz um jeweils 20 Basenpaare vor und nach dem zu ändernden Codon.

Tabelle 9 Quikchange-PCR

Finales Ansatzvolumen	50 µl
dNTP-Mix (2 mM) (Thermo Scientific)	5 μl
Pfu Polymerase Puffer 10x (Agilent)	5 μΙ
Forward Primer (10 μM)	1.25 μl
Reverse Primer (10 μM)	1.25 μl
Max. 40 ng Template DNA	
Pfu Turbo HotStart Polymerase (Agilent)	1 μl

Tabelle 10 Quikchange-PCR,	R, 18x Wiederholung der Schritte 2 -
----------------------------	--------------------------------------

Schritt	Temperatur	Dauer	Bedeutung
1	95 °C	5 min	Anfängliche Denaturierung
2	95 °C	30 s	Denaturierung
3	55 °C	1 min	Annealing der Primer
4	68 °C	12 min	Elongation
5	72 °C	10 min	Terminale Elongation

Um die methylierte Ursprungs-DNA aus dem Ansatz zu entfernen, wurde 1 µl DpnI (Agilent) zu dem Ansatz hinzugegeben und über 1 h bei 37 °C inkubiert.

4.2.7 Transformation und Isolation von DNA-Plasmiden

Für die Transformation wurden 10 - 15 μl des Ligations-Ansatzes bzw. des Quikchange-Ansatzes zu 50 μl kompetenter XL1-Blue Zellen pipettiert. Nach einer Inkubation über 7 min auf Eis, erfolgte der Hitzeschock über 1.5 min bei 42 °C. Nach einer erneuten Inkubation auf Eis über 7 min wurde ~500 μl LB Medium zu den Zellen gegeben und der Ansatz über 30 - 40 min bei 37 °C geschüttelt. Nach einer Zentrifugation (5 min, 4000 g, RT) wurde das resuspendierte Pellet (Resuspension mit dem Überstand nach Abkippen) auf Antibiotika-haltige Agarplatten Platten ausplattiert. Am darauffolgenden Tag wurden 3-5 Klone gepickt und in Antibiotika-haltigem LB-Medium über Nacht vermehrt (4 ml, 37°C). Die generierten Plasmide wurden mittels eines Kits (NucleoSpin Plasmid EasyPure Kits, Macherey-Nagel) laut Herstellerangaben isoliert und für eine Überprüfung der DNA-Sequenz an die Firma LGC geschickt.

4.3 Elektrophysiologische Charakterisierung von RhGCs/RhACs in Oocyten

4.3.1 Vorbereitung I: RNA Synthese

Für die elektrophysiologische Charakterisierung der Photorezeptoren in *Xenopus* Oocyten wurden die jeweiligen Gene in einen pGEM-HE Vektor (Derivat pGEM3Z Promega) mithilfe der Restriktionsenzyme BamHI (5[°]) und Hind3 (3[°]) integriert. Um cRNA herzustellen, wurden die zuvor generierten Konstrukte mittels des Restriktionsenzyms Nhe1 (FastDigest Thermo Scientific) für 1 h bei 37 °C geschnitten. Nach Bestätigung des erfolgreichen Verdaus mittels Gelelektrophorese wurde die linearisierte DNA mithilfe des PCR-Cleanup Kits (Macherey-Nagel) basierend auf den Herstellerinformationen aufgereinigt. Die finale Elution erfolgte mit 15 μ l Elutionspuffer; zur Erhöhung der DNA-Ausbeute wurde der Elutionsdurchlauf erneut auf die Säule gegeben und DNA-Konzentration > 100 ng/ μ l erzielt.

Tabelle II Elliearisterung der Divit	
Finales Ansatzvolumen	30 µl
Nhe I (FastDigest Thermo Scientific)	2 μl
Plasmid DNA	2500 – 3000 ng
10x Fast Digest Puffer (Thermo Scientific)	3 μΙ

Tabelle 11 Linearisierung der DNA

Ausgehend von der linearisierten DNA erfolgte in einem zweiten Schritt die *in-vitro* Synthese der mRNA mithilfe des mMESSAGEmMACHINER T7 Ultra Kits (Ambion). Hierbei wurde laut Herstellerangaben vorgegangen. Zur Vermeidung von Kontaminationen wurde mit Barriere-Pipettenspitzen gearbeitet.

Tabelle	12	RNA-S	ynthese
---------	----	--------------	---------

Finales Ansatzvolumen	15 μl
10x Reaktionspuffer (Ambion)	1.5 μl
2 mM dNTPs (Ambion)	5 μl
DNA	~800 - 1000 ng
Enzym-Mix (Ambion)	1 μl

Nach Inkubation über 1 h 20 min (1 h 30 min) bei 37°C (leicht schüttelnd) wurde die RNA mit 10 μ l RNAse-freiem H2O und 18 μ l LiCl₂ gefällt und über Nacht bei -20 °C inkubiert. Am darauffolgenden Tag wurde die RNA mithilfe einer 30-minütigen Zentrifugation (4 °C, 16.000 g) pelletiert. Nach Abnahme des Überstands, wurde das Pellet mit 200 μ l 70 %-igem EtOH gewaschen und es folgte eine weitere Zentrifugation für 5 min (4°C, 16.000 g). Nach Abnahme des Überstands wurde das RNA-Pellet mithilfe einer Vakuum-Zentrifuge getrocknet. Je nach Pelletgröße wurde das RNA-Pellet in 5-10 μ l Nuklease-freiem Wasser gelöst. Die RNA Konzentration wurde bei 260 nm durch ein Photospektrometer festgestellt und die Qualität der RNA wurde gelelektrophoretisch überprüft (5 μ l SYBR Green, 5 μ l FastDigest Puffer (Thermo Scientific)).

4.3.2 Vorbereitung II: Präparation und Injektion der Xenopus Oocyten

Frisch entnommene Oocyten wurden in 20 ml ORI-Puffer aufgenommen (96mM NaCl, 5mM KCl, 1mM MgCl2, 5mM MOPS, pH 7.5) und über 2 h (Inkubator 200 U/min, 18°C) mit Kollagenase IA (Sigma, 4mg) behandelt, um die Follikelschicht abzulösen. Oocyten der Reifungsstadien IV bis VI wurden isoliert (Zusatz von mit 0.05 mg/ml Streptomycin und 50 U/l Penicillin (Sigma), Inkubation bei 18 °C über Nacht) und am darauffolgenden Tag mit RNA injiziert. Die Injektionsnadeln wurden mit einem Mikropipetten Puller (P-97, Sutter Instruments) aus Glaskapillaren (Glass Replacement 3.5 nl, Ø 0.5 mm, OD=1.14 mm, World PrecisionInstruments) so gefertigt, dass sie ein Innenvolumen von ca. 5 µl und einen Spitzen-Durchmesser von 10-30 µm aufwiesen. Mit Hilfe eines Mikroinjektors (Nanoliter 2000, World Precision Instruments) wurden 32 nl RNA-Lösung luftblasenfrei in die weiße, vegetative Seite einer Zelle injiziert. Für die RNA-Lösung wurden gleiche Volumina der RNA des Reporter CNG-A2 Kanals (cAMP/cGMP) mit jeweiligen RNA der verschiedenen RhGC Konstrukten/bPAC vermischt. Der cGMP-sensitive CNG-A2 Kanal¹⁹⁰ stammt ursprünglich aus olfaktorischen Rattenneuronen (gb: 6978671), das Einführen der Mutationen C460W/E583M überführte den Wildtyp in den cAMP-sensitive CNG-A2 Kanal. Die injizierten RNA-Mengen sind in der Legende der jeweiligen Abbildung vermerkt.

4.3.3 Elektrophysiologische Messungen (TEVC) in Xenopus Oocyten

3-5 Tagen nach der RNA-Injektion wurden die Photoströme mittels der Two-Elektrode-Voltage-Clamp-Methode (TEVC) vermessen. Die Datenerfassung erfolgte mit einem TURBO TEC-03X-Verstärker (NPI Electronic) und der pCLAMP 9.0 Software (Molecular Devices). Die zur Messung verwendeten Mikroelektroden wurden aus Borosilikatglaskapillaren (1.50 mm Außendurchmesser und 1.17 mm Innendurchmesser) mit einem Mikropipettenabzieher (Modell hergestellt und Nr. P-97. Sutter Instrument) mit 3 M KCl gefüllt. Der Mikroelektrodenwiderstand betrug 0.5 bis 1.5 Megaohm. Die Oocyten wurden mit einer XBO 75W Xenon-Lampe (Osram) belichtet, die durch einen LS3-Shutter (Vincent Associates UNIBLITZ) gesteuert wurde. Für Grünbelichtung wurden zwei Filter benutzt: ein 560 ± 60 nm Breitbandfilter (K55 Balzers) oder ein 530 ± 9 nm Filter (20BPF10-530 8C057 Newport). Die Lichtintensität wurde mit Hilfe von Neutraldichtefiltern verringert. Der extrazellulärer Messpuffer bestand aus: 96 mM NaCl, 5 mM KCl, 0.1 mM CaCl₂, 1 mM MgCl₂, 5 mM Hepes (pH 7.5). Während des TEVC-Experiments lag die Haltespannung bei -20 mV oder -40 mV. Die Daten wurden mit der Software Stimfit 0.13¹⁹² und Clampfit 10.4 (Molecular Devices LLC) analysiert. Das Skript zur Auswertung ist angehängt (Tabelle 16).

4.3.4 Quantifizierung von cAMP/cGMP in Oocyten Lysaten mittels ELISA

Nach Injektion von 10 ng cRNA (RhGCs/RhAC) und Inkubation der Oocyten über 5 Tagen (ORI Puffer, 18 °C, im Dunkeln) wurden jeweils 3 Oocyten unter Rotlicht vereint und auf einer LED Matrix (Adafruit NeoPixel NeoMatrix 8×8 - 64 RGB) belichtet (522 nm, 0.010 mW mm⁻ ²,). Für bPAC-injizierte Zellen wurde Blaulicht verwendet (470 nm, 0.015 mW mm⁻²). Die Belichtungsreaktion wurde nach 5 min durch einen Abwurf der Proben in flüssigen Stickstoff gestoppt. Dunkel-adaptierte Zellen wurden direkt nach dem Vereinigungsschritt in flüssigen Stickstoff überführt. Die folgenden Arbeitsschritte erfolgten in Rotlicht. Nach Auftauen wurden die Oocyten durch 0.1 N HCl (400 µl zu 3 Oocyten) und starkes Auf-und-Ab-Pipettieren zerstört. Es folgten 3 Zentrifugationsschritte bei 4 °C unter Verwendung von Filtern, um das cAMP/cGMP-haltige Cytoplasma zu isolieren: 1) 7 min bei 16000 g, 2) 7 min bei 15000g mit einem 0.22-µm Zentrifugal Filter (Spin-X cellulose acetate membrane centrifugal filter, Corning Costar) und 3) 30 min bei 14,000g mit einem 10 kd Auschluss-Filter (Ultra-0.5 Centrifugal Ultracel-10 membrane, Amicon). Der finale Durchlauf wurde für Filter, die immunhistochemische Quantifizierung von cAMP/cGMP verwendet. Diese beruhte auf einem direkten cAMP/cGMP Enzyme linked absorbance assay (direct cAMP/cGMP ELISA, Enzo Life Sciences); die Durchführung erfolgte laut den Hersteller Angaben. Die Auswertung des ELISA Tests erfolgte durch einen 4-fach logistischen Fit mithilfe von myAssays (<u>https://www.myassays.com/</u>). Die dargestellten ELISA Daten zeigen die cNMP-Konzentrations-Mittelwerte mit ihren Standardfehlern, n = 1 entspricht 3 Oocyten, die Daten sind repräsentativ für mindestens 2 unabhängige Wiederholungen.

4.3.5 RhGC Nachweis in Oocyten-Membranen durch Immunoblots

Für die Überprüfung der RhGC-Expressionslevel wurde ein Immunoblot (anit-his) von Oocyten-Membranen durchgeführt Hierzu wurden 10 Oocyten 3- 5 Tage nach der Injektion vereint. Nach Zugabe von 50 µl HbA Puffer pro Oocyte (20 mM Tris, pH 7.6, 5 mM MgCl₂, 5 mM Na₂PO₄, 80 mM Saccharose) mit frisch aufgetautem PMSF (final 0.1 mM) wurden die Zellen mittels mehrmaligem Auf- und Abpipettieren lysiert. Zur Entfernung größerer Zellmembranreste etc. folgten 2 sukzessive Zentrifugationen über 10 min bei 200 RPM, 4° C. Im Anschluss wurde der Überstand über 30 min, bei 13000 rpm, 4 °C zentrifugiert. Das Pellet (10 Oocyten) wurde in 40 µl 1x Probenpuffer (125 mM Tris, pH 6.8, 4% (w/v) SDS, 20 % Glycerin (v/v), 2 µl gesättigte Bromphenolblaulösung pro 1 ml Puffer) "frisch" versetzt mit 100 mM DTT (finale Konzentration) resuspendiert (Vortex). Nach Erhitzen (10 min bei 60 °C) wurden 20 µl der Probe auf ein 12 % SDS Gel aufgetragen und die Proteine via Semidry-Blotting (7 minute Turbo transfer protocol, 1x Turbo Buffer, Biorad) auf eine PVDF-Membran

übertragen (Immobilion-P, Porengröße 0.45 μ M, Roth). Nach Inkubation (1 h, RT) der Membran in Blockpuffer (5 % Magermilchpulver in PBS-T (136.9 mM NaCl, 2.68 mM KCl, 10 mM Na₂HPO₄ *2H₂O & 1.76 mM KH₂PO₄, pH 7.4) und 0.1% (V/V) Tween 20) wurde die Proteine durch den primären Antikörper (anti-his, Maus, Sigma-Aldrich, 1:4000 inkl. 0.7- 1 % (w/v) Milchpulver in PBS-T) detektiert (4 °C, über Nacht). Nach 3x Waschen (je 10 min) mit PBS-T wurde die Membran mit dem Sekundär-Antikörper (anti-mouse Alkaline Phosphatase, Sigma-Aldrich, 1:10000 in Block-Puffer) über 1 h (RT) inkubiert. Vor Zugabe der Detektionslösung wurde die Membran wiederum 3x mit PBS-T gewaschen. Die Detektionslösung (100 mM Tris pH 9.5, 100 mM NaCl, 5 mM MgCl₂) enthielt Nitroblau-Tetrazoliumchlorid (60 µg/mL, Stammlösung: 75 mg/mL in 70 %(v/v) DMF, Fluka) und 5-Brom-4-chlor-3-indoxylphosphat (150 µg/mL, Stammlösung: 50 mg/mL in DMF, Sigma-Aldrich). Die Farbreaktion wurde durch Zugabe von ddH2O gestoppt (~15 min).

4.4 Elektrophysiologische Charakterisierung von RhGCs/RhACs in Rattenneuronen

4.4.1 BeRhGC Ganzzell Patch-Clamp Experimente

Die elektrophysiologische Charakterisierung von BeRhGC (Abb. 25) wurde durch Christine Gee (UKE Hamburg) durchgeführt (gemäß¹⁹³). 5 - 7 Tage nach der Geburt weiblicher Wistar Ratten wurden hippokampale Schnittkulturen ohne die Verwendung von Antibiotika hergestellt. Die Neuronen wurden mit folgenden Plasmiden durch Elektroporation transfiziert: pAAV-synbeRHGC-2A-tdimer2 (BeRhGC), Ratten-CNG-A2 (PCI-syn-CNGA2) und PCI-syn-mKate2N. Alle Plasmide beinhalteten den Neuronen-spezifischen Promotor Synapsin-1, syn. Vor Elektroporation wurden die RhGC- und CNG-A2-Plasmide auf 25 ng/µl, und das mKate2-Plasmid auf 50 ng/µl mit Pipettenlösung verdünnt. Die Pipettenlösung bestand aus 135 mM Kaliumgluconat, 4 mM MgCl₂, 4 mM Na₂-Adenosin Triphosphate, 0.4 mM Na-GTP, 10 mM Na₂-Phosphokreatin, 3 mM Ascorbat, and 10 mM Hepes (pH 7.2, 295 mosmol, Widerstand der Elektroporations-Pipette: ~14 megohm). Weiterhin wurden die Schnitte vor Elektroporation in eine Lösung mit 145 mM NaCl, 10 mM Hepes, 25 mM D-Glucose, 2.5 mM KCl, 1 mM MgCl₂ und 2 mM CaCl₂ (pH 7.4 ~ 311 mosmol) getaucht. Für die Elektroporation wurde ein Axoporator 800A (Molecular Devices) verwendet (50 Pulse (-12 mV, 0,5 ms) bei 50 Hz). Nach 4 - 10 Tagen wurden Ganzzell Patch-Clamp Messungen bei 30 °C in künstlicher Cerebrospinalflüssigkeit durchgeführt. (Cerebrospinalflüssigkeit: 127 mM NaCl, 2.5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 25 mM NaHCO₃, 1.25 mM NaH₂PO₄ und 25 mM D-Glucose (pH $7.4 \sim 308$ mosmol, gesättigt mit 95% O₂/5% CO₂). Um schnelle exzitatorische und inhibitorische synaptische Übertragung zu blockieren, war bei den meisten Experimenten 10 μ M NBQX, 10 μ M CPPene, and 100 μ M Picrotoxin zugesetzt. Die Mess-Pipetten (3 bis 6 Megaohm) wurden mit der gleichen intrazellulären Lösung gefüllt, die für die Elektroporation (ohne die DNA) verwendet wurde. Für die Messung wurden die Zellspannung bei -65 mV konstant gehalten und die Ströme mit einem Axoclamp200B Verstärker (Molecular Devices) und der Ephus Software aufgezeichnet. Der Serienwiderstand betrug weniger als 20 Megaohm. Zur Photostimulation von RhGC wurde eine Vierfarben-LED-Lichtquelle (Mightex) über eine Multimode-Faser (1.0 mm) und einen Kollimator (Thorlabs) an den Kameraanschluss eines BX61WI-Mikroskops (Olympus) gekoppelt. Die Strahlungsleistung wurde mit einer Silicium-Photodiode (LaserCheck) in der Probenebene (verwendete Objektivlinse, Plan-Apochromat 40 × 1.0 numerische Apertur, Zeiss) gemessen und durch das beleuchtete Feld (0.244 mm²) dividiert. Die Analyse der Ströme wurde mit MATLAB durchgeführt, während Graphen und Kurven-Fits mit GraphPad Prism 6.0 erstellt wurden

4.4.2 Vergleich von BeRhGC und CaRhGC/YFP-CaRhGC und Charakterisierung von YFP-CaRhAC

Die elektrophysiologische Charakterisierung von BeRhGC/CaRhGC/YFP-CaRhGC/YFP-CaRhAC (Abb. 34) wurde von Christine Gee und Oana Constantin (UKE Hamburg) durchgeführt (gemäß Scheib et al. 2018¹⁸⁷). 5 - 7 Tage nach der Geburt weiblicher Wistar Ratten wurden hippokampale Schnittkulturen ohne die Verwendung von Antibiotika hergestellt. Die für die Elektroporation verwendeten CaRhGC/BeRhGC/CaRhAC Plasmide beruhten wiederum auf pAAV-Syn (Details sind Scheib et al 2018¹⁸⁷ zu entnehmen). Nach frühestens 10 Tagen (bis zu 3 Wochen) Inkubation der Schnittkulturen erfolgte die Elektroporation. 6 - 15 Tage nach der Elektroporation wurde die Ganzzell Patch-Clamp Messung durchgeführt. Die extrazelluläre Messlösung beinhaltete 119 mM NaCl, 26.2 mM NaHCO₃, 11 mM D-glucose, 2.5 mM KCl, 1 mM NaH₂PO₄, 4 mM MgCl₂, 4 mM CaCl₂, pH 7.4, 310 mOsm/kg, gesättigt mit 95 % O₂ / 5 % CO₂. Um schnelle exzitatorische und inhibitorische synaptische Übertragung zu blockieren, war bei den meisten Experimenten 10 µM NBQX, 10 µM CPPene, and 100 µM Picrotoxin zugesetzt. Wenn die durch Licht hervorgerufenen Ströme groß genug waren, um Aktionspotentiale hervorzurufen, wurde auch der Natriumkanalblocker 1 µM Tetrodotoxin hinzugefügt. Die Zugabe der Antagonisten beeinflusste die von Licht hervorgerufenen Ströme nicht. Die intrazelluläre Lösung enthielt: 135 mM K-gluconate, 10 mM Hepes, 0.2 mM EGTA, 4 mM Na₂-ATP, 0.4 mM Na-GTP, 4 mM MgCl₂, 3 mM Ascorbat, 10 mM Na₂- Phosphokreatin, pH 7.2, 295 mOsm/kg. Patch-Elektroden bestanden aus dickwandigem Borosillikatglas und hatten Widerstände von 3-5 MΩ. Das Flüssigkeitsverbindungspotential wurde gemessen (-14.1 bis -14.4 mV) und kompensiert. Für die Messung wurde die Zellspannung bei -70 mV konstant

gehalten und die Ströme mit einem Axoclamp200B Verstärker (Molecular Devices), dem National Instruments A/D Board und der Ephus Software aufgezeichnet. Der Serienwiderstand betrug weniger als 25 Megaohm und wurde während der Messung nicht kompensiert. Bei konstanten Strommessungen wurde die Brückenausgleichskompensationsschaltung verwendet. Die Membranantwort der Neuronen wurde durch somatische Strominjektionen (-400 pA bis 400 pA) verifiziert. Die Probe wurde durch das Objektiv (40x) mit einer Vierwellenlängen-LED-Lichtquelle (Mightex Systems), die über eine Multimode-Faser (1.0 mm) und einen Kollimator (Thorlabs) mit dem Mikroskop BX61WI (Olympus) über den Kameraport verbunden war, Photo-stimuliert. Die Strahlungsleistung wurde mit einer Silicium-Photodiode (LaserCheck) in der Probenebene (verwendete Objektivlinse, Plan-Apochromat 40 × 1.0 numerische Apertur, Zeiss) gemessen und durch das beleuchtete Feld (0.244 mm²) dividiert. Um die Antwort auf verschiedene Wellenlängen zu verglichen, wurde die Beleuchtungsintensität von der Vierfarben-LED so eingestellt, dass sie so genau wie möglich übereinstimmte. Die hervorgerufenen Ströme wurden durch die tatsächliche Intensität jeder vor der Normierung verwendeten Wellenlänge dividiert. Die Analyse der Ströme wurde mit MATLAB durchgeführt, während Graphen und Kurven-Fits mit GraphPad Prism 6.0 erstellt wurden. Für die Bestimmung des EC₅₀ wurde die Steigung zwischen dem 30 und 50% -Wert der Spitzenantwort berechnet. Für die Analyse des Strombeginns ("time to onset") wurde der Schnittpunkt der Anfangssteigung mit der Basislinie bestimmt und die Differenz zum Startpunkt der Beleuchtung berechnet. Fehlerbalken repräsentieren den Median- und Interquartilbereich, wenn nicht anders angegeben.

4.5 Aufreinigung und Charakterisierungen verschiedener RhGC/RhAC Konstrukte

4.5.1 Expression und Aufreinigung von BeRh in *P. pastoris*

Für nachfolgenden *in-vitro* Versuche wurde die BeRh Domäne (1-396 AS) heterolog in *P. pastoris* (1168H Stamm, Invitrogen) exprimiert, gemäß Scheib et al. ¹⁹³, Durchführung durch Katja Stehfest. Hierfür wurden die DNA-Sequenzen mittels der EcoRI und NotI Schnittstellen vor eine 6-fache Polyhistidin (6x His) Sequenz in den pPICZ Plasmid (Invitrogen) subkloniert. Die DNA-Konstrukte wurden in *Pichia pastoris* transformiert und die Proteinsynthese wurde für 24 h induziert. Die Zellen wurden gesammelt und mithilfe eines Hochdruck Homogenisators (AVESTIN) lysiert. Die Protein-enthaltene Membran Fraktion wurde durch Zentrifugation bei pelletiert und mittels eines Potter-Stösels weiter homogenisiert; das Protein wurde mithilfe von 1 % (w/v) Dodecylmaltosid (DDM) über Nacht bei 4 °C solubilisiert. Die weitere Aufreinigung der in Detergenz gelösten Proteine umfasste die Auftragung des Proteins auf eine Ni-NTA Säule

(5 ml His trap crude column, GE Healthcare), die nach Applikation von 10 Säulenvolumen Waschpuffer (50 mM imidazole) mithilfe des Elutionspuffer (500 mM Imidazol) von der Ni-NTA Säule eluiert wurden. Die Protein-enthaltenen Fraktionen wurden vereint und überschüssiges Imidazol wurde mittels einer Entsalzungsäule entfernt (HiPrep 26/10 Desalting column, GE Healthcare). Nach Elution mit 50 mM Tris (pH 8.0), 100 mM NaCl, 0.03 % DDM, 0.1 mM Phenylmethylsulfonyl fluorid wurde das Protein auf eine optische Dichte von 1 mithilfe eines 100 kD-Auschluss Filters (Amicon Ultra 100 kD, Millipore) angereichert. Die optische Dichte wurde mithilfe eines UV/VIS-Spektrometers (Cary 50 Bio-Spektrophotometer, Varian Inc.) bei 525 nm bestimmt unter der Annahme eines Absorptionskoeffizienten von $\varepsilon = 45 00001$ cm⁻¹ mol⁻¹.

4.5.2 Expression und Aufreinigung von CaRh/RhGCs/RhACs in Insektenzellen

Für nachfolgenden *in-vitro* Versuche wurden die isolierte CaRh Domäne (1-396 AS) sowie die Vollängen BeRhGC/CaRhGC/CaRhACs heterolog in Sf9-Insektenzellen exprimiert, gemäß Scheib et al. 2018 ¹⁸⁷. Die Durchführung erfolgte durch Katja Stehfest, Shatanik Mukherjee und Matthias Broser. Hierfür wurden die DNA-Sequenzen vor eine 6-fache Polyhistidine (6x His) Sequenz in den pFastBac Plasmid subkloniert und das Konstrukt mittels eines Baculovirus in Sf9 Insektenzellen gebracht (Bac-to-Bac Baculovirus Expression System, Thermo Fisher Scientific). Die Transformation und Induktion der Proteinexpression erfolgte laut den Herstellerangaben ⁸⁴. 72 h nach Induktion der Proteinexpression wurden die Zellen pelletiert und mit Puffer A (20 mM MOPS/Hepes pH 7.5, 100 mM NaCl, cOmplete Protease Inhibitor) gewaschen und bei -80°C eingefroren. Die folgenden Aufreinigungsschritte erfolgten bei 4°C. CaRh wurde mit Puffer A unter Zusatz von n-Dodecyl-β-D-maltosid (DDM) und Cholesterol hemi-Succinat, mit einer finalen Konzentration von 2% (w/v) und 0.5% (w/v), solubilisiert (über Nacht, 4°C). Die Vollängen-Konstrukte CaRhGC/CaRhAC/BeRhGC wurden mit DDM/CHS/1,2-Dimirystoyl-sn-Glycerol-3-Phosphocholin(DMPC)/N,N-Dimethyl-n-

dodecylamin N-oxid (LDAO) mit einer finalen Konzentration von 2%/0.5%/0.01%/0.25% (w/v) solubilisert (über Nacht, 4°C). Die weitere Aufreinigung der in Detergenz gelösten Proteine umfasste die Auftragung des Proteins auf eine Ni-NTA Säule (5 ml His trap crude column, GE Healthcare). Die Protein wurden nach Applikation von 10 Säulenvolumen Waschpuffer (Puffer A mit 50 mM Imidazol und 0.05 %/0.0 1% DDM/CHS) mithilfe des Elutionspuffer (Puffer A, 500 mM Imidazol, 0.05 %/0.01 % DDM/CHS) von der Ni-NTA Säule eluiert. Die Protein-enthaltenen Fraktionen wurden vereint und überschüssiges Imidazol wurde mittels einer Entsalzungssäule entfernt (HiPrep 26/10 Desalting column, GE Healthcare). Nach Elution mit 50 mM Tris (pH 8.0), 100 mM NaCl, 0.05 % /0.01 % DDM/CHS, 0.1 mM Phenylmethylsulfonyl Fluorid wurden die vereinten Proteinfraktionen auf einen Gelfiltrations-

Säule (HiLoad 16/600 Superdex 200 pg, GE Healthcare) aufgetragen. Nach Elution mit 50 mM Tris (pH 8.0), 100 mM NaCl, 0.05 %/ 0.01 % DDM/CHS, 0.1 mM Phenylmethylsulfonyl Fluorid wurden die Proteinfraktionen auf eine optische Dichte von 1 mithilfe eines 100 kD-Auschluss Filters (Amicon Ultra 100 kD, Millipore) einkonzentriert. Die Proteinkonzentration von CaRh/CaRhGCs/CaRhACs/BeRhGC wurde bei einer Absorption von 540 nm mit einem Extinktionskoeffizienten von $\varepsilon = 45000 \text{ M}^{-1} \text{ cm}^{-1}$ bestimmt.

4.5.3 Expression und Aufreinigung von BeGC/CaGC/CaAC

Die isolierten Zyklase Domänen (443-626 AS) von CaGC, BeGC und CaAC wurden in einem pET21 Vektor vor einen 6xHis-tag kloniert (NdeI, XhoI) und in E. coli C41 (DE3) bei 37°C exprimiert (6x 800 ml LB-Kulturmedium mit 100 μ g/ml Ampicillin. Bei OD₆₀₀ = 0.5 wurden die Zellen in den 18°C Inkubator transferiert und nach 1 h die Expression mittels 0.8 - 1 mM IPTG über Nacht bei 18 °C induziert. Die gesammelten Zellen wurden lysiert (French press 3 Durchgänge) und grobes Zellmaterial durch Zentrifugation entfernt: 1) 10 min, 16.000 g, 4 °C, 2) 1 h, 40.000 g, 4 °C. Im Folgenden wurde das Protein mithilfe von 3 konsekutiven Chromatographie-Säulen aufgereinigt. 1) Ni-NTA Säule (5 x 5ml HisTrap HP, GE Healthcare), 20 Säulenvolumen Waschpuffer (20 und 50 mM Imidazol), Elution mit 500 mM Imidazol. 2) Imidazol wurde durch die Hiprep 26/10 Entsalzung Säule (GE Healthcare) entfernt, die mit 20 mM Tris/HCl, 50 mM NaCl, pH 8.0 equilibriert war. Nach Einkonzentration (50 kDa Amicon Ultra Filter (Millipore)) wurde das Protein auf eine 3) Gelfiltrations-Säule appliziert (HiPrep 16/60 Sephacryl S-100 HR (GE Healthcare). Im Anschluss an die Elution mit 20 mM Tris/HCl, 50 mM NaCl, pH 8.0, wurde das Protein mithilfe des 10 kDa Amicon Ultra Filter (Millipore) einkonzentriert und die Konzentration mittels Nano Drop bestimmt. Molekulargewicht der Zyklasen: 21.5 kDa. (CaGC Extinktionskoeffizient: 31002.00 l mol⁻¹·cm⁻¹, BeGC Extinktionskoeffizient: 31065.00 l mol⁻¹·cm⁻¹, CaAC Extinktionskoeffizient: 30940.00 1 mol⁻¹·cm⁻¹). Für die Entfernung des His-Tags von CaGC wurde 18.72 mg CaGC mit 3.74 mg TEV Protease und 0.8 ml Mercaptoethanol (143 mM) in 16 ml Gesamtvolumen (Puffer: 20 mM Tris, 50 nM NaCL pH 8) über 1 h 15 min bei Raumtemperatur mit leichter Bewegung inkubiert. Hierbei wurde das Verhältnis Protein zu TEV: 5:1 zuvor in einem Vortest mit kleinerem Volumen bestimmt. Ausgefallenes Protein wurde durch Zentrifugation (max. Geschwindigkeit, 4°C) entfernt. Der His-tag wurde mittels einer Ni-NTA Säule abgetrennt und der Durchfluss gesammelt. Nach Einkonzentration (10 kDa Amicon Ultra Filter, Millipore) wurde dieser auf eine Gelfiltrations-Säule appliziert (HiPrep 16/60 Sephacryl S-100 HR (GE Healthcare). Im Anschluss an die Elution mit 20 mM Tris/HCl, 50 mM NaCl, 2 mM DTT, pH 8.0, wurde CaGC mithilfe des 10 kDa Amicon Ultra Filter (Millipore) einkonzentriert. Die Reinheit der aufgereinigten Proteine wurde durch einen 12 % SDS-Page überprüft.

4.5.4 Spektroskopische Analysen

Die UV/Vis Spektroskopie und Blitzlicht-Photolyse wurde von Katja Stehfest gemäß¹⁹³ und ¹⁸⁷ durchgeführt.

4.5.4.1 Spektroskopische Untersuchung der aufgereinigten BeRh/CaRh Domäne

UV/Vis-Absorptionsspektren von Be/CaRh (1-396) wurden in einem Cary 50 Bio-Spektrophotometer (Varian Inc.) bei 20°C mit einer spektralen Auflösung von 1.6 nm aufgezeichnet. Die Belichtung von BeRh erfolgte mit einer grünen LED (505 nm, 0.07 mW mm⁻²) über 1 min, für CaRh über 30 s, 60 s und 90 s (530 nm, 0.54 mW mm⁻²). Die Blitzlicht-Photolyse wurde an einem LKS.60-Flash-Photolysesystem (Applied Photophysics Ltd.) bei 22°C durchgeführt. Anregungsimpulse von 10 ns (bei 525 nm) wurden durch ein abstimmbares Rainbow OPO / Nd: YAG-Lasersystem bereitgestellt. Die Laserenergie wurde auf 6 mJ/Schuss (BeRh) bzw. 15 mW/Blitz (CaRh) eingestellt. Das Gerät verwendete eine Xenonlampe (150 W) als Überwachungslichtquelle, die während Kurzzeit-Experimenten gepulst wurde. Die Datenanalyse wurde mit Matlab 7.01 Software (The MathWorks) durchgeführt. Die Singularwertzerlegung repräsentativer Datensätze und die Datenanpassung durch globale Analyse wurden mit Glotaran 1.5.1 durchgeführt, um statistisch signifikante Komponenten und Zeitkonstanten zu identifizieren, die in einem sequentiellen Modell zur Rekonstruktion des 3D-Spektrums verwendet wurden.

4.5.5 In-vitro Enzymaktivitätsmessungen mittels HPLC basierter cNMP Detektion

Um die Enzymaktivität in Form einer Michaelis-Menten-Kinetik zu bestimmen, wurden steigende NTP/Mn²⁺-Konzentrationen (0.25 mM – 15 mM GTP/ATP, Mn²⁺, Sigma-Aldrich) zu dem aufgereinigten Enzym gegeben (0.05 nmol full-length CaRhGC, 0.1 nmol BeRhGC, 2.3 nmol CaAC(E497K/C566D), 1.7 nmol CaGC, 1.3 nmol BeGC, 0.08 nmol CaRhAC(E497K/C566D). Das finales Ansatzvolumen betrug 100 μ l (50 mM Hepes, 100 mM NaCl, pH 7.5). Die Reaktion wurde durch Zugabe des jeweiligen Enzyms gestartet (Schüttler, 22 °C). Für jede Substratkonzentration wurden die Proben zu 4 Zeitpunkten, die sich innerhalb des Zeitraums der linearen Produktzunahme befanden, gestoppt. Die lineare Produkt-Zeit-Abhängigkeit wurde in einem Vorversuch bestimmt; die Inkubationszeiten der Volllängen RhGCs waren 30 s, 60 s, 120 s, 180 s, 240 s, die Inkubationszeiten der isolierten Zyklase Domänen CaGC/BeGC,/CaAC waren 30 s, 1 min, 1.5 min, 2 min. Die Volllängen Konstrukte wurden während der Inkubationszeit wahlweise belichtet (522 nm, 0.010 mW mm⁻², Adafruit NeoPixel NeoMatrix 8×8 - 64 RGB). Es wurden Triplikate für jede Substratkonzentration

angefertigt. Nach Stoppen der Reaktion durch Überführen in flüssigen Stickstoff und Zugabe von 200 µl 0.1 N HCl wurden die Proben zentrifugiert (90 s, 12,000 g, RT). Zur Ermittlung des cNMP Gehalts wurden die Proben filtriert (0.2 µm Chromafil filter, Macherey-Nagel) und 25 µl des Überstands wurden auf eine C18 Umgekehrte Phase High Pressure Liquid Chromatography (HPLC) Säule (SUPELCOSIL[™] LC-18-T, 3 µm particle Size, 15cm x 4.6 mm, Sigma-Aldrich) aufgetragen, die mit 100 mM K₂HPO₄,/KH₂PO₄, 4 mM Tetrabutylammonium Iodid, pH 5.9, 10 % Methanol equilibriert war. (Laufgeschwindigkeit 1.2 ml/min). Die Elution der cNMP Analyte wurde bei 260 nm verfolgt (Retentionszeit für cGMP ~7 min, für cAMP ~16 min) und die Elutionspeaks mithilfe von Origin 8.5.5 (OriginLab) mithilfe eines cNMP Standards (Sigma-Aldrich) bekannter Konzentration quantifiziert. Für die Bestimmung der initialen Reaktionsgeschwindigkeiten wurden die ermittelten cNMP Konzentrationen gegen die Zeit aufgetragen und nach linearer Regression der Kurvensteigungswert ermittelt. Bei den Volllängen Konstrukten wurden die initialen Steigungen der unbelichteten Proben von den initialen Steigungen der belichteten Proben subtrahiert. Für die Michaelis-Menten-Kinetik wurden die Steigungswerte gegen die Substratkonzentration aufgetragen; ein Hill-Fit $(y=v_{max}*x^n/(k^n+x^n))$ erlaubte die Bestimmung von v_{max} , K_M . Die v_{max} Werte wurden auf die Proteinmenge bezogen (Nano Drop-Bestimmung für isolierte Zyklasen, UV/Vis-Bestimmung bei 530 nm für die Volllängen-Konstrukte).

Für den Vergleich der Enzymaktivität von BeGC ohne oder mit Coiled-Coil Linker (BeCC-GC) wurden jeweils 66 µg aufgereinigtes Protein über einen Zeitraum von 10 min mit 1 mM GTP/Mn²⁺ in einem Volumen von 100 µl schüttelnd inkubiert (50 mM Hepes pH 7.5, 100 mM NaCl, 22 °C). Die Detektion und Analyse der cGMP Konzentration erfolgte wie oben beschrieben.

4.5.5.1 pH- und Ionen-Abhängigkeit der Enzymaktivität

Um den Einfluss des pHs auf die Enzymaktivität zu untersuchen wurden die aufgereinigten Volllängen RhGCs/RhAC bzw. die isolierte Zyklase Domänen (Proteinmengen 11 - 55.36 μ g) über 5 min mit NTP/Mn²⁺ (1 mM) in einem Gesamtvolumen von 100 μ l inkubiert (22 °C, Schüttler). Die Pufferkonzentration war auf 50 mM eingestellt (Mes für pH 5 und 6, Hepes für pH 7 und 7.5, Tris/Hcl für pH 8 und 9, Sigma-Aldrich) mit 100 mM NaCl. Das Stoppen der Reaktion und die Detektion von cNMP erfolgte wie zuvor beschrieben. Die cNMP Peak Flächen (mAU * min) per mg Protein wurden mithilfe von OriginLab bestimmt. Es wurden mindestens 2 unabhängige Experimente, jeweils mit Triplikaten durchgeführt.

Zur Bestimmung der Enzymabhängigkeit von verschiedenen Ionen Mn²⁺/Ca²⁺/Mg²⁺ (1 mM, Sigma-Aldrich) wurde aufgereinigtes Volllängen RhGC/RhAC bzw. isolierte Zyklase Domänen

(Proteinmengen 11 - 55.36 μ g) über 5 min mit NTP (1 mM) in einem Gesamtvolumen von 100 μ l, bei 22°C auf dem Schüttler inkubiert (50 mM Hepes pH 7.5, 100 mM NaCl). Das Stoppen der Reaktion und die cNMP Detektion erfolgte wie zuvor beschrieben. Die cNMP Peak Flächen (mAU * min) per mg Protein wurden mithilfe von OriginLab bestimmt. Es wurden mindestens 2 unabhängige Experimente, jeweils mit Triplikaten durchgeführt.

4.5.5.2 Inhibition der enzymatischen Aktivität

Die Inhibition der isolierten Enzymen BeGC/CaGC/CaAC erfolgte durch NTP Analoga, in einem Gesamtvolumen von 100 µl (50 mM Hepes pH 7.5, 100 mM NaCl) während einer Inkubationszeit von 10 min. Für BeGC und CaGC (70 µg, 0.5 mM GTP/Mn²⁺) wurden die GTP Analoga Guanosin-5'-(α -thio)-Triphosphat (GTP α S, 1.4 mM) und Guanosin-5'-[(α , β)methylen]Triphosphat (GPCPP), 0.7 mM bzw. 1.4 mM, Jena Bioscience) eingesetzt. Für CaAC (70 µg, 0.5 mM GTP/Mn²⁺) wurden die ATP Analoga Adenosin-5'-(α -thio)-Triphosphat (ATP α S, 1.4 mM) und Adenosin-5'-[(α , β)-methylen]Triphosphat (APCPP), 1.4 mM) eingesetzt (Jena Bioscience). Die cNMP Peak Flächen (mAU * min) per mg Protein wurden mithilfe von OriginLab bestimmt

4.5.6 Charakterisierung der Bindungsaffinität von CaAC/CaGC/BeGC

Zur Bestimmung der Substrataffinität von CaAC, CaGC und BeGC wurde die intrinsische Protein-Trp-Fluoreszenz an einem Shimadzu RF5301 Fluoreszenzspektrometer (Anregung 280 nm, Emission 300-400 nm, Spaltbreite NM 5) gemessen. Fluoreszenzlöschung wurde durch eine titrationsbasierte Zugabe von ATP / GTP (0 - 7 mM) zu CaAC: 0.45 µM, 0.68 µM 1.29 μM, CaGC: 0.74 μM 1.02 μM 1.3 μM, oder BeGC: 0.69 0.87 1.04 μM induziert (50 mM Hepes, 100 mM NaCl, pH 7.5, 10mM $MnCl_2$ (Ansatzvolumen: 220 μ l)). Die Emissionsverringerung bei 336 nm wurde um die Probenverdünnung korrigiert und gegen die Substratkonzentration aufgetragen. Die Daten wurden mit MATLAB R2015a gefittet (Formel: $0.5*(E+x+kd-((x-E+kd)^2+4*kd*E)^0.5)*X;$ mit Е = Enzymkonzentration, х = Substratkonzentration, kd = Dissoziationskonstante, X = Proportionalfaktor). Basierend auf dem Fit wurde die Dissoziationskonstante K_D ermittelt.

4.5.7 Kristallisation von BeGC/CaGC/CaAC

Nach Aufreinigung der isolierten BeGC Domäne, wurde BeGC mit dem GTP Analogon GPCPP (Jena Bioscience) kokristallisiert (XRD 2). Hierfür wurden 0.45 µl Protein (6 mg/ml) in 20 mM Tris/HCl pH 8, 50 mM NaCl, 5 mM GPCPP mit 0.45 µl der Reservoirlösung gemischt und Sitting-Drops automatisiert pipettiert. Für den 1.2 Å Datensatz bestand die Reservoirlösung aus:

0.2 M NaCl, 0.1 M Na Cacodylat pH 6.5, 2 M AmSO4 (JCSG well E2). Für den 1.5 Å Datensatz bestand die Reservoirlösung aus: 0.2 M Sodium chloride 0.1M Hepes pH 7, 20% w/v PEG 6000 (PACT well C7). Die Equilibrierung erfolgte gegen 70 μl Reservoirlösung (JCSG/PACT, Molecular Dimensions). Nach ~1 Woche erschienen Kristalle, die nach Fischen in Cryo-Protektiv (20 % Glycerol, kein zusätzlicher Ligand!) getaucht wurden.

Nach Aufreinigung der isolierten CaGC Domäne, wurde CaGC mit dem GTP Analogon GPCPP (Jena Bioscience) kokristallisiert. Für den 1.2 Å CaGC Datensatz (XRD 5) wurde 0.45 μ l Protein (5 mg/ml) in 20 mM Tris/HCl pH 8, 50 mM NaCl, 1 mM CaCl₂, 7.5 mM MgCl₂, 4 mM GPCPP mit 0.45 μ l der Reservoirlösung gemischt und Sitting-Drops automatisiert pipettiert. Die Reservoirlösung bestand aus 0.2 M Magnesium Chlorid, 0.1 M Tris pH 7, 10 % PEG 8000 (JCSG, well B8, Molecular Dimensions). Die Equilibrierung erfolgte gegen 70 μ l Reservoirlösung. Die Kristalle wurden mit 25 % Trehalose als Cryo-Protektiv (mit Liganden und Salzen) gefischt.

Für den ~2 Å Datensatz (XRD 6) wurde 0.45 μ l CaGC (ohne His-tag, 10 mg/ml) in 20 mM Tris/HCl pH 8, 50 mM NaCl, 1 mM CaCl₂, 7.5 mM MgCl₂, 2 mM DTT, 2.5 mM GPCPP mit 0.45 μ l der Reservoirlösung gemischt und Sitting-Drops automatisiert pipettiert. Die Reservoirlösung bestand aus: 0.2 M Potassium Thiocyanat 0.1 M Sodium Acetat pH 5.5 15 % w/v PEG 4000 (Clear Strategy CS1, well A11, Molecular Dimensions). Die Equilibrierung erfolgte gegen 70 μ l Reservoirlösung. Die Kristalle wurden ohne Cryo-Protektiv gefischt.

Nach Aufreinigung der isolierten Adenylylzyklase Domäne (E497K, C566D) wurde CaAC mit dem ATP Analog ATP α S (Jena Bioscience) kokristallisiert (XRD 5). Hierfür wurden 0.45 µl Protein (15.5 mg/ml) in 20 mM Tris/HCl pH 8, 50 mM NaCl, 7.5 mM CaCl₂, 7.5 mM MgCl₂, 10 mM ATPaS mit 0.45 µl der Reservoirlösung (0.2 M K Thiocyanat, 0.1 M Na Cacodylate pH 6.5, 25% w/v PEG 2000 MME) gemischt und Sitting-Drops automatisiert pipettiert. Die Equilibrierung erfolgte gegen 70 µl Reservoirlösung (Clear strategy I, Molecular Dimensions). Nach ~1 Woche erschienen Kristalle, die nach Fischen in Cryo-Protektiv getaucht (7.5 mM Ca²⁺, 7.5 mM Mg²⁺, 10 mM ATP α S, 20% Glycerol (v/v)) wurden.

Die in flüssigen Stickstoff konservierten Kristalle wurden am Helmholtz-Zentrum Berlin (HZB) am BESSY II electron storage ring (Berlin-Adlershof, Germany)²⁵¹ an der BL14.1 Zelle vermessen.

Für BeGC konnten 2 volle Datensätze bei 1.2 Å und 1.5 Å erzielt werden. Nach Prozession mit XDSAPP2.0 ²⁵²²⁵³ wurde das Phasenproblem durch Molekularen Ersatz mit einer Schleifenlosen mykobakteriellen AC (RV1625c, PDB: 4P2F) gelöst (Phaser ²⁵⁴). Das Modell resultierte nach iterativem manuellem Fitten in COOT Fitten in COOT 0.8.7 ²⁵⁵ und nachfolgendem Refinement mit Phenix 1.10.1 ²⁵⁶. Für CaGC konnten volle Datensätze bei 1.2 Å und ~2 Å erzielt werden. Die Datenprozession erfolgte wie oben beschrieben mit Molekularem Ersatz gegen die 1.5 Å BeGC Struktur. Für CaAC konnte ein voller Datensatz bei 2.25 Å erzielt werden, der mit XDSAPP 2.0 weiter prozessiert wurde. Die Datenprozession erfolgte wie oben beschrieben mit Molekularem Ersatz gegen die 1.2 Å CaGC Struktur. Durch iteratives manuelles Fitten in COOT 0.8.7 und nachfolgendem Refinement in BUSTER-TNT 2.10.2 -TNT 2.10.2 (BUSTER-TNT 2.X, Global Phasing Ltd, Sheraton House, Cambridge CB3 0AX, UK) und Phenix 1.10.1 wurde das finale Modell generiert. Alle Analysen und Abbildungen wurden mithilfe von Pymol (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC) erstellt. Die Koordinaten und das Streubild von CaAC sind in der Protein Data Bank www.pdb.org hinterlegt, unter der PDB ID 5OYH.

4.6 Bioinformatische Analysen

Sekundärstrukturvorhersagen wurden mithilfe des Webtools Yaspin²⁵⁷ und mit JPred4²⁰³ erstellt, die Coiled-Coil Vorhersagen beruhen auf dem Webtool COILS²⁰⁵. Aminosäuresequenz-Vergleiche wurden mithilfe von ClaustalO¹⁸⁸ und dem MAFFT²⁵⁸ Server angefertigt.

5 Anhang

5.1 Sequenz-Vergleich der Rhodopsin Domäne

RhGC (CA) RhGC (BE)	1 1	MK DK DNNL RG ACSGCSCPEYCYSPTSTLCDDCKCSVTKHPIVEQPLTR NG SF R MK DK DNNL RG ACSSCNCPEYCFSPTSTLCDDCKCSVTKHPIVEQPLSR NG SF R	S	TG S S T A S S 78 T S T V G L R S R K S E S 83
DeltaR (HT)				
BR (HS)				
ASR (Sp.N)				
HaloR (HS)				
ChR2 (CR)				
HKR1 (CR)				
RhGC (CA)	79	N A NM R N R Q N N S L S V S N V R S T S S A S S S N V S S P A N S R P G S P S K Q S A L Q Q Y Q T	N I A DMWS WDMML S T P S L	KFLTGQFIMWAIL 158
RhGC (BE) DeltaR (HT)	84	Q A N V R G	AMSELWSWNMMLSTPSL	KFLTVQFTTWIVL 158
BR (HS)				
ASR (Sp.N)				
HaloR (HS)	1			MSITSVP 7
ChR2 (CR)	1		- MDYGGALSAVGRELLF	VTNPVVVNGSVLV 29
HKR1 (CR)			MPATS	RREGVELYLLASY 18
			helix -1	helix 0
		Rhodonsin		
Phoc (CA)	150			
RhGC (BE)	159	TT VG A I YT L F F HE RQAYNRGWADI WYG YG AFGFGLGLS F AYMGFTG AR NPEKK	A L S L C L L G V N F I S F M S Y	I I I ML R L T P T I E G 241
DeltaR (HT)	1		E F Y <mark>I I T T F I</mark> T T I A A A M <mark>Y</mark>	F A M A T G F <mark>G V T</mark> E V V 69
BR (HS)	1	QAQITGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAK	K F Y <mark>A I T T L V P A I A F T M Y</mark>	L S M L L G Y G L T M V P 70
SRII (NP)	1		R Y Y V T L V G I S G I A A V A Y	VVMALGVGWVPVA 64
HaloR (HS)	8	G V V D AG V L G AQ S A A A V R E NA L L S S L W V N V AL AG I A I L V F V YMG R T I R PG R P R	LIWGATLMIPLVSISSY	LGLLSGLTVGMIE 90
ChR2 (CR)	30	P E DQ C Y C A G W I E S R G T NG A Q T A S N V L Q W L A A G F S I L L L M F Y A Y Q T W K S T C G W E	E I Y <mark>V C A I</mark> E M V K <mark>V I L</mark> E F <mark>F</mark>	FEFKNPSMLYLAT 112
HKR1 (CR)	19	L I C T S N L G D P E L T A Q F H A Q A D P N A Y T W P M V A F G T A F G L N F I T L L F E R E S A K F Q	L A L <mark>L A C Y I N</mark> F L <mark>A G F</mark> S D <mark>Y</mark>	MSWKGYAPIVRDS 101
		helix 1	helix 2	
DI GG (GA)	2.42	** +	+	*
RhGC (CA)	242	** + TLSN	+ S D Y A L V V C G F F G A V L P P N D Y A L C L A G F V G A L S A O	* Y P WG N L F N I L S - C 310 O P WG D L A H F V S - C 310
RhGC (CA) RhGC (BE) DeltaR (HT)	242 242 70	* * + TLSNPVEPATVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPATVLEWIATCPVLILLISEITQYPHDPYKVIV VGDEALTIYWATVADWLFTTPLLLLDLGLLAGANRNTIATLIG	+ S D Y A L V V C G F F G A V L P P N D Y A L C L A G F V G A I S A Q L D V F M I G T G M I A A F A A T	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I A WWG I S T 141
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS)	242 242 70 71	* * + T L S N P V E P A I Y L E W I A T C P V L I L L I S E I T Q A D H N A WG V V F T M A N P V E P A I Y L E W I A T C P V L I L L I S E I T Q Y P H D P Y K V I V V G D E A L T I Y WA I Y A D WL F T T P L L L D L G L L A G A N R NT I A T L I G F G G E Q N P I Y WA I Y A D WL F T T P L L L L D L A L L V D A D Q G T I L A L V G	+ S DYALVVCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMIGTGLVGALTKV	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I A W WG I S T 141 Y - S Y R F V WWA I S T 142
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP)	242 242 70 71 65	** + TLSNPVEPAIYLEWIATCPVLILLIS EITQADHNAWGVVF TMANPVEPAIYLEWIATCPVLILLIS EITQYPHDPYKVIV VGDEALTIYWAIYADWLFTTPLLLLDLG LLAGANRNTIATLIG FGGEQNPIYWAIYADWLFTTPLLLLDLA LLVDADQGTILALVG ERTVFAPHYIDWILTTPLLVYFLG LLAGLDSREFGIVIT	+ S D Y A L V V C G F F G A V L P P N D Y A L C L A G F V G A I S A Q L D V F M I G T G M I A A F A A T A DG I M I G T G L V G A L T K V L N T V V M L A G F A G A M Y P G	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L FG MG A 131
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp.N)	242 242 70 71 65 65	** + TLSN	+ S DY A L VV C G F F G A V L P P N D Y A L C L A G F VG A I S AQ L DV F M I G T G M I A A F A A T A D G I M I G T G L VG A L T K V L NT VV M L A G F A G AM V P G T Q I VV I T S G L I A D L S E R D L G M V T G L A A M T T S	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WY R Y L WY I C G V 136 A L L E PWA E Y A L S C 160
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR)	242 242 70 71 65 65 91	** + TLSNPVEPAIVLEWIATCPVLILLISEITQADHNAWGVF TMANPVEPAIVLEWIATCPVLILLISEITQYPHDPYKVIV VGDEALTIYWAYADWLFTTPLLLLDGLLAGANRNTIATLIG FGGEQNPIYWAYADWLFTTPLLLLDGLLAGLDQGTIALVG FGG	+ s DY A L V V C G F F G A V L P P N D Y A L C L A G F VG A I S A Q L D V F M I G T G M I A A F A A T A D G I M I G T G L VG A L T K V L N T V Y M L A G F A G A M V P G T Q I V V I T S G L I A D L S E R A D I G M C V T G L A A A M T T S D I G T I V W G A T S A M A T G	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L WY I C G V 136 A L L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR) HKR1 (CR)	242 242 70 71 65 91 113 102	** + TLSN	+ s DY A L V V C G F F G A V L P P N D Y A L C L A G F VG A I S A Q L D V F M I G T G M I A A F A A T A D G I M I G T G L VG A L T K V L N T V Y M L A G F A G A M V P G T Q I V V I T S G L I A D L S E R A D I G M C V T G L A A A M T T G S D I G T I V W G A T S A M A T G A D V L M I T F G I L A F L A Y N	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L WY I C G V 136 AL L F R WA F Y A I S C 169 Y - VK Y I F F C L G L 182 K - VMS I L F YMV AW 170
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR) HKR1 (CR)	242 242 70 71 65 91 113 102	** + TLSNPVEPAIVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPAIVLEWIATCPVLILLISEITQYPHDPYKVIV VGDEALTIYWAYADWLFTTPLLLLDLGLLAGANRNTIATLIG FGG	+ s DY A L V V C G F F G A V L P P NDY A L C L A G F VG A I S A Q L D V F M IG T G M I A A F A A T A D G I M G T G L VG A L T K V L N T V W II A G F A G A W P G T Q I V V I T S G L I A D L S E R A D I G M C V T G L A A A M T T S S D I G T I V WG A T S A M A T G A D V L M I T F G I L A F L A Y N	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L WY I C G V 136 A L L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - V MS I L F Y M V AW 170 C - C C C C C C C C C C C C C C C C C C
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR) HKR1 (CR)	242 242 70 71 65 91 113 102	** + TLSNPVEPANVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPANVLEWIATCPVLILLISEITQYPHDPYKVIV VGDEALTIYWAYADWLFTTPLLLLDLGLLAGANRNTIATLIG FGGEQNPIYWAYADWLFTTPLLLLDLGLLAGALDSREFGIVIT GQIAHYANYIDWILTTPLLLLSSWTAMQFIKKDWTLIGFLMS MPAGHALAGEMVRSQWGIVLTWALSTPMILLALGLLADVDLGSLFTVIA GHRVQWLYAEWLLTCPVVLIHLSNITGLSNDYSRTMGLLV WGQGFQLLNTVMWLLTTPAMVYLLS helix 3 h	+ s DYALVVCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMIGTGUVGAISAQ LTVFMIGTGLAGFAGAMVPG TQIVVITSGLIADLSER ADIGMCVTGLAAAMTTS SDIGTIVWGATSAMATG ADVLMITFGILAFLAYN elix 4	* Y P WG N L F N I L S - C 310 Q P WG D L A H F Y S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L WY I C G V 136 AL L F R WA F Y A I S C 169 Y - V K Y I F F C L G L 182 K - V MS I L F Y M V AW 170 helix 5
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR) HKR1 (CR)	242 242 70 71 65 65 91 113 102	** + TLSNPVEPANVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPANVLEWIATCPVLILLISEITQYPHDPYKVIV VGDEALTIYWAYADWLFTTPLLLLDLGLLAGANRNIATLIG FGGEQNPIYWAYADWLFTTPLLLLDLGLLAGADSREFGIVIT GQIAHYANYIDWILTTPLLLLSSWTAMQFIKKDWTLIGFLMS MPAGHALAGEMVRSQWGIVLTWALSTPMILLALGLLADVDLGSLFTVIA GHRVQWLIYAEWLLTCPVILIHLSN.LIGLSNDYSRTMGLLV WGQGISDFSRLKVYSVML helix 3 h	+ S DYALVVCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMIGTGUVGATAAT ADGIMIGTGLVGALTKU INTVVMIAGFAGAMVPG TQIVVITSGLIADLSER ADIGMCVTGLAAAMTTS S DIGTIVWGATSAMATG ADVLMITFGILAFLAYN elix 4	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S V R F V WWA I S T 142 - I E R Y A L F G MG A 123 D - WV R Y L WY I C G V 136 A L L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - V MS I L F Y M V AW 170 helix 5 * Δ
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR) HKR1 (CR)	242 242 70 71 65 65 91 113 102	** + TLSNPVEPAIVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPAIVLEWIATCPVLILLISEITQYPHDPVKVIV VGDEALTIYWAIYADWLFTTPLLLLDLGLLAGANRNTIATLIG FGG	+ SDYALVVCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMIGTGLVGALTKV LTVVMLAGFAGAMVPG TQIVVITSGLIADLSER ADIGMCVTGLAAAMTTS SDIGTIVWGATSAMATG ADVLMITFGILAFLAYN elix 4	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S V R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L WY I C G V 136 AL L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - VMS I L F Y MV AW 170 helix 5 * A MIDIG A V F L T L V 390
RhGC (CA) RhGC (BE) DeltaR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (BE) DeltaB (HC)	242 242 70 71 65 91 113 102 311 311 142	** + TLSNPVEPAIVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPAIVLEWIATCPVLILLISEITQYPHDPVKVIV VGDEALTIYWAIYADWLFTTPLLLLDLGLLAGANRNTIATLIG FGGCURAPIVIDWILTTPLIVYFLGLLAGUSREFGIVIT GQI	+ SDYALVVCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMIGTGLVGALTKU LTVVMLAGFAGAMVPG TQIVVITSGLIADLSER ADIGMCVTGLAAAMTTS SDIGTIVWGATSAMATG ADVLMITFGILAFLAYN elix 4 SG MLSFTMTEASFT SG LISFTVAEAGFS GTEGUPLYWETAAFM	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S V F F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L WY I C G V 136 A L L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - VMS I L F Y M V A W 170 helix 5 * A MI D I G A W F L T L V 390 MI D I G A V F L T L V 390 MI D I G A V F L T L V 390 MI D I G A V F C G G V V 222 V D I S A V G E G V 222
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRI (IVP) ASR (Sp N) HaloR (HS) ChR2 (CR) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA) BeltaR (HT) BR (HS)	242 242 70 71 65 91 113 102 311 311 142 143	** TLSNPVEPAYVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPAYVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPAYVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPAYVLEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPAYVLEWIATCPVLILLISEITQADHNAWGVVF TGGELAGLDSREFGIVIT GGIAHYAIYIDWILTTPLIVYFLGLLAGLDSREFGIVIT GQIAHYAIYIDWILTTPLIVYFLGLLAGLDSREFGIVIT GQIAHYAIYIDWILTTPLIVYFLGLLADVDLGSLFTVIA GHA.LAGEMVRSQWGIYLTWALSTPMILLALGLLAVDVDLGSLFTVIA GHAYQWLIYAEWLLTCPVILIHLSNTGISNDYSRTMGLLV WGQGFQLLITVMWLLTTPAMVYLLSISDFSRLKVYSVML helix 3	+ S DY AL VV C G F F G A V L P P N D Y AL C L A G F V G A I S A Q L D V F M I G T G M I A A F A A T A G I M I G L V G A L T K V L N T V V M L A G F A G A M V P G T Q I V V I T S G L A D L S E T S D I G T I V W G A T S A M A T G A D V M I T F G I L A F L A Y N elix 4 S G ML S F T M T E A S F T S G L I S F T V A E A G F S G T F G I L P L Y WE T A A F M G - A G I V P N I E T L F M	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - 1 E R Y A L F G MG A 131 D - WV R Y L W Y I C G V 136 A L L F RWAF Y A I S C 169 Y - V K V I F F C L G L 182 K - V M S I L F Y M V A W 170 Helix 5 * A MI D I G A V F L T L V 390 MI D I G A V F L T L V 390 V L D L S A V G F G V 222 V L D V S A V G F G U 222
RhGC (CA) RhCC (BE) DeltaR (HT) BR (HS) SRII (IVP) ASR (5p,N) HaloR (HS) ChR2 (CR) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (IVP)	242 242 70 71 65 91 113 102 311 311 142 143 132	** + TLSNPVEPAYVEWIATCPVLILLISEITQADHNAWGVVF TMANPVEPAYVEWIATCPVLILLISEITQYPHDPYKVIV VGDEALTIYWAYADWLFTTPLLLLDLGLLAGLDSRTFGIVIT GGGEQNPIYWAYADWLFTTPLLLLDLGLLAGLDSREFGIVIT GQI	+ S DYALVVCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMIGTGLVGALTKV LNTVVMLAGFAGAMVPG TQIVVITSGLIADLSER ADIGMCVTGLAAAMTTS S DIGTIVWGATSAMATG ADVLMITFGILAFLAYN elix 4 S G LISFTVAEAGFS EGTFGILPLYWETAAFM G - AGIVPLNIETLLFM P- VALTPTVDVALIV	* YPWGNLFNILS-C 310 QPWGDLAHFVS-C 310 P-GTRIAWWGIST 141 Y-SYRFVWWAIST 142 - IERYALFGMGA 131 D-WVRYLWYICGV 136 ALLFRWAFYAISC 169 Y-VKVIFFCLGL 182 K-VMSILFYMVAW 170 helix 5 *
RhGC (CA) RhGC (B) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR) RhGC (CA) RhGC (CA) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp. N)	242 242 70 71 65 65 91 113 102 311 311 142 143 132 137	** + TLSN	+ s DY A L V V C G F F G A V L P P N D Y A L C L A G F VG A I S AQ L D V F M I G T G M I A A F A A T A D G I M I G T G L V G A L T K V L N T V Y M L A G F A G AM V P G T Q I V V I T S G L I A D L S E R A D I G M V T G L A A A M T T S S D I G T I V W G A T S A MA T G A D V L M I T F G I L A F L A Y N elix 4 S G L I S F T V A E A G F S E G T F G I L P L Y WE T A A F M E G - A G I V P L N I E T L L F M G - V A L T P Y D V A I Y S G - F G W N Q T I D T F L F C	* YPWGNLFNILS-C 310 P-GTRIAWWGIST 141 Y-SYRFVWWAIST 142 -SYRFVWWAIST 142 -SYRFVWWAIST 141 D-WVRYLWYICGV 136 ALLFRWAFYAISC 169 Y-VKYIFFCLGL 182 K-VMSILFYMVAW 170 helix 5 * Δ MIDIGAN VFLTLV 390 MIDIGAN VFLTLV 390 VLDLSAN VGFGFL 211 LLPFFSNVGFGFL 211
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR) NHGC (BE) DeltaR (HT) BR (HS) SRI (NP) BR (HS) SRI (NP) HaloR (HS) ChR2 (CA)	242 242 70 71 65 65 91 113 102 311 142 143 132 137 170	** + TLSN	+ S DY A L VV C G F F G A VL PP ND YAL CL A G F VG A I S AQ L DV FM I G T GM I AA F AA T AD G I MI G T G L VG A I T KV L NT VV ML AG F AG AMV PG T Q I VV I T S GL I A DL S ER AD I G MC VT G L A A AMT T S S D I G T I V WG AT S AMAT G AD VL M I T F G I L A F L AYN elix 4 S G LI S FT V AE AG F S E S T F G I L P L YWE T A A F M E G - AG I V P L NI E T L L F M E G - AG I V P L NI E T L L F M S G - F G WI NQ T I D T F L F C E G L AL VOS VG VT S WAY S A D V S Y C Y Y S Y Y C Y T S Y C Y C T Y	* Y P WG N L F N I L S - C 310 P + G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 11 D + W Y R Y L WY I C G V 136 A L L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 * A MI D I G A V F L T L V 390 MI D I G A V F L T L V 390 V L D L S A V G F G V 222 V L V S A V G F G L 122 Y L D V T N G F G F L 216 L D F F S V G F S F L 216 V L D F A Y Y V F A F 1 248 I D I G W V F V F L 148 Y C F G F S L 216 Y L D V F A V Y V F A F 1 248 I D I G W V F C W F S F L 216 V L D V F A V Y V F A F 1 248 I D W W W W W W W W W F I S 148 V W W F A W Y V F A F 1 248 V W W W W W W W W W W W W W W W W W W W
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRI (HP) ASR (5p. N) HaloR (HS) ChR2 (CR) HKR1 (CR) BR (HS) SRI (HP) ASR (5p. N) HaloR (HS) ChR2 (CR) HaloR (HS)	242 242 70 71 65 65 91 113 102 311 311 142 143 132 137 170 183 171	** + TLSN	+ S D Y A L V V C G F F G A V L P P N D Y A L C L A G F V G A I S A Q L D V F M I G T G M I A A F A A T A D G I M I G T G L V G A I T K V L N T V V M L A G F A G M V P G T Q I V V I T S G L I A D L S E A D I G M V T G L A A A M T S S G M L S F T M T E A S F T S G L I S F T V A E A G F S E G T F G I L P L Y WE T A A F M E - A G I V P L N I E T L L F M E - A G I V P L N I E T L L F M S G - C M I N Q T I D T F L F C E G L A V O S V G V T S WAY S E G - F G V L S V Y G S T V G H T M G L V D I R T E E W T W C	* Y P WG N L F N I L S - C 310 P + G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 13 D + W Y R Y L WY I C G V 136 A L L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 * MI D I G A V F L T L V 390 MI D I G A V Y F L T L V 390 V L D L S A V G F G V 222 V L D Y A K V G F G F L 211 V L D Y S K V G F G F L 212 V L D Y F K Y Y F A F L 248 I L D F F S V G F S S 249
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR) RhGC (BE) DeltaR (HT) BR (HS) SRI (NP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR)	242 242 70 71 65 65 91 113 102 311 311 142 143 132 137 170 183 171	** + TLSN. PVEPAIVLEWIATCPVLILLIS EITQADHNAWGVVF TMAN PVEPAIVLEWIATCPVLILLIS EITQYPHDPYKVIV VGD. EALTIYWAYADWLFTTPLLLLDLG LLAGANRNIATLIG FGG. EQNPIYWAYADWLFTTPLLLLDLG LLAGANRNIATLIG FGG. EQNPIYWAYADWLFTTPLLLLDLG LLAGANRNIATLIG FGG. EQNPIYWAYADWLFTTPLLLLDLG LLAGANRNIATLIG GQI. AHYANYIDWILTTPLLLLSUSWTAMQFIKKDWTLIGFLMS MPAGHALAGEMVRSQWGIVLTWALSTPMILLALG LLADVDLGSLFTVIA GR. -VQWLYAEWLTCPVILHLSS. WGQG. -FQLLMTVMWLLTPAMVYLLS MPAGHALAGEMVRSQWGIVLTWALSTPMILLALG LLADVDLGSLFTVIA GR. -VQWLYAEWLTCPVILHLSS. HEIX 3 - MPAGHALAGEMVRSQWGIVLTWALSTPMILLALG - GR. - <td< th=""><th>+ S DY A L VV C G F F G A VL PP NDYAL CL A G F VG A I S AQ L DV FM I G T GM I AA F AA T AD G IM I G T G L VG AL T K V L NT VV ML AG F AG AMVP G T Q I VV I T S GL I A DL S ER AD I G M V T G L A A AMT T S S D I G T I V WG AT S AMAT G AD VL M I T F G I L A F L A Y N elix 4 S G LI S FT V AE AG F S S G LI S FT V AE AG F S E G T F G I L P L Y WE T A A F M E - AG I V P L N I E T L L F M E - AG I V P L N I E T L L F M S G - C V L T P T V D V AL I V S G - F G VL S V G V T S WAYS E G L A V S V G V T S WAYS E G - F G V L S V G S T V M T C E G L A V S V G V T S WAYS E G - F O V L S V G S T V M T C E G - A V S V G S T V M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y S S C S V S M S S C E G - C V S V Y S S C S V S M S S C E G - C V S V Y S S C S V S M S S C E G - C V S V Y S S C S V S M S S C E G - C V S V S S S C S V S S S S S C S S S S</th><th>* Y P WG N L F N I L S - C 310 P - G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 113 D - WV R Y L WY I C G V 136 A L L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - VMS I L F Y M V AW 170 Helix 5 * MI D I G A K V F L T L V 390 W L D L S A V G F G V 222 V L D Y S A V G F G V 222 V L D Y S A V G F G F L 216 V L D Y F A Y Y F A F I 248 I D L F A Y Y F A F I 248 I D L G K N C W F S S 249 A L F F C G G K Y F A F I 248 I D L G K Y C G F S F 211 V M S N C W F S S 249 A L C F G C G C V 222 C D Y F A Y Y F A F I 248 I D L G K Y C F S S 249 A L C F G C Y F C C C C C C C C C C C C C C C C C</th></td<>	+ S DY A L VV C G F F G A VL PP NDYAL CL A G F VG A I S AQ L DV FM I G T GM I AA F AA T AD G IM I G T G L VG AL T K V L NT VV ML AG F AG AMVP G T Q I VV I T S GL I A DL S ER AD I G M V T G L A A AMT T S S D I G T I V WG AT S AMAT G AD VL M I T F G I L A F L A Y N elix 4 S G LI S FT V AE AG F S S G LI S FT V AE AG F S E G T F G I L P L Y WE T A A F M E - AG I V P L N I E T L L F M E - AG I V P L N I E T L L F M S G - C V L T P T V D V AL I V S G - F G VL S V G V T S WAYS E G L A V S V G V T S WAYS E G - F G V L S V G S T V M T C E G L A V S V G V T S WAYS E G - F O V L S V G S T V M T C E G - A V S V G S T V M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y G S T S M T C E G - C V S V Y S S C S V S M S S C E G - C V S V Y S S C S V S M S S C E G - C V S V Y S S C S V S M S S C E G - C V S V Y S S C S V S M S S C E G - C V S V S S S C S V S S S S S C S S S S	* Y P WG N L F N I L S - C 310 P - G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 113 D - WV R Y L WY I C G V 136 A L L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - VMS I L F Y M V AW 170 Helix 5 * MI D I G A K V F L T L V 390 W L D L S A V G F G V 222 V L D Y S A V G F G V 222 V L D Y S A V G F G F L 216 V L D Y F A Y Y F A F I 248 I D L F A Y Y F A F I 248 I D L G K N C W F S S 249 A L F F C G G K Y F A F I 248 I D L G K Y C G F S F 211 V M S N C W F S S 249 A L C F G C G C V 222 C D Y F A Y Y F A F I 248 I D L G K Y C F S S 249 A L C F G C Y F C C C C C C C C C C C C C C C C C
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR) RhGC (E) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR)	242 242 70 71 65 91 113 102 311 131 142 143 132 137 170 183 171	** * TLSN. PVEPAIVLEWIATCPVLILLIS EITQADHNAWGVVF TMAN. PVEPAIVLEWIATCPVLILLIS EITQADHNAWGVVF TMAN. PVEPAIVLEWIATCPVLILLIS EITQADHNAWGVVF YGG. EALTIYWAIYADWLFTTPLLLLDLG LLAGANRNIATLIG FGG. EQNPIYWAIYADWLFTTPLLLLDLG LLAGALDSREFGIVIT GQI. AHYAHYIDWITTPLLLLSSWTAMQFIKKDWTLIGFLMS MPAGHALAGEMVRSQWGIVLTWALSTPMILLALG LLADVDLGSLFTVIA GRG. YQUNYAEWLTCPVLIHLSS MPAGHALAGENVRSQWGIVLTWALSTPMILLALG LLADVDLGSLFTVIA GRG. YQUNYAEWLTCPVLIHLSS MPAGHALAGENVRSQWGIVLTWALSTPMILLALG LLADVDLGSLFTVIA GRG. YQUNYAEWLTCPVLIHLSS MPAGHALAGENVRSQWGIVLTWALSTPMILLALG LLADVDLGSLFTVIA GRG. YQUNYAEWLTCPVVIA MPAGHALAGENVRSQWGIVLTWALSTPMILLALG LLADVDVSSRTMGLV WGQG. FQLLMTVMWLTTPAMVYLLS MARANY FUNTYSLWSCFTGAIDGETQCNVEKSGLRWIRFSTTTTWINGTNEKSTY GALLALLYVVSWSSCFTGAIDGETQCNVEKSGLRWIRFSTTTTWILVULLYPVVWILGS AAMLYILYVVGTLS. KAARGSPEVASTEGRLRNLVIVULWLYVVWILGS GALLALLYVVVSWSWGFTGAIDGETQCNVEKSGLRWIRFSTTTWINGAYPVWLIGS YYVVSLWSCFTGAIDGETQCNVEKSGLRWIRFSTTTWINGAYPVWLIGS	+ S DYALVVCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMGTGLVGALTKV LNTVVMLAGFAGAMVPG TQIVVITSGLIADLSER ADIGMCVTGLAAAMTTS S DIGTIVWGATSAMATG ADVLMITFGILAFLAYN elix 4 S G LISFTVAEAGFS E G TFGILPLYWETAAFM E G - AGIVPLNIETLLFM E G - AGIVPLNIETLLFM S G - C - LSFTVDVALTVVVAL S G - C - LSFTVDVALTVVVAL S G - C - LSFTVDVAL S G - C - LSFTVDVAL	* Y P WG N L F N I L S - C 310 P + G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A I D + WY R Y L WY I C G V 136 A L L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - VMS I L F Y MY A W 170 helix 5 * MI D I G A K V F L T L V 390 V L D L S A V G F G L 1222 V L D Y S A V G F G L 1222 V L D Y S A V G F G L 1222 V L D Y S A V G F G F 1 211 L P F F S V G F S F L 216 V L D Y F A Y Y F A F I 248 I D L M S N C WG L 263 A C D F L G K V M F S S 249 helix 7
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp N) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp N) HKR1 (CR)	242 242 70 71 65 91 113 102 311 311 142 143 132 137 170 183 171	<pre>** + TLSN</pre>	+ S DY AL VV C G F F G A VL PP ND Y AL CL A G F VG A I S AQ L DV F MI G T G MI AA F AA T AD G I MI G G U YG A L TK V L NT VV ML AG F AG AM V PG T Q I VV I T S G L I AD L S E T AD I G MC VT G L A AA M T S S D I G T I VWG A T S AM AT G AD I G MC VT G L A AA M T S S D I G T I VWG AT S AM AT G AD U M I T F G I L AF L A Y N elix 4 S G ML S FT M T E AS F T S G L I S FT V AE AG F S S T F G I L P L Y WE T AA F M F G - VALLT PT V D V AL I V S G - F G W I NQ T I D T F L F M PS - VALLT PT V D V AL I V S G - F G W I NQ T I D T F L F M S G - F G V L S V Y G S T V G H T MG L V D I R T E E W T WC	* Y P WG N L F N L S - C 310 P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S V R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L WY I C G V 136 AL L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - VMS I L F YMV A I S C 169 Y - V K V I F F C L G L 182 K - VMS I L F YMV A I S C 169 Y - V K V I F C L G L 122 V L V S A V G F G L 1 222 V L D V S A V G F G L I 222 V L D V S A V G F G L I 222 V L D V S A V G F G L I 222 V L D V S A V G F G L I 222 V L D V T N V G F S C 126 V L D V F A V V F A F I 248 I D L M S N C WG L 263 A C D F L G V M F S S 249 helix 7
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp N) HaloR (HS) ChR2 (CR) HKR1 (CR) PeltaR (HT) BR (HS) SRI (NP) ASR (Sp N) HaloR (HS) ChR2 (CR) HKR1 (CR)	242 242 70 71 65 91 113 102 311 311 142 143 132 137 170 183 171 391	** + TLSN	+ S DY A L VV C G F F G A V L P P N D Y A L C L A G F VG A I S AQ L D V F M I G T G M I A A F A A T A D I G M I G T G M I A A F A A T A D I G M I G T G M I A A F A A T A D I G M C T G L A G A A A M T S S D I G T I V W G A T S A M A T G A D V L M I T F G I L A F L A Y N elix 4 S G ML S F T M T E A S F T S L I S F T V A E A G F S E G T F G I L P L Y WE T A A F M P G - AG I V P N I E T L F M P G - AG I V P N I T L T L F M P G - F G W I N Q T I D T F L F C G G - F G V L S Y Y G S T V G H T MG L V D I R T E E W T WC 442	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A I F G MG A 131 D - WV R Y L W I I C G V 136 AL L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - V M S I L F YM V AW 170 Helix 5 * MI D I G A V F L T L V 390 MI D I G A V F L T L V 390 V L D L S A V G F G I 222 Y L D V T N V G F G F I 211 L P F S N V G F G F I 211 L P F S N V G F G F I 248 I I D L M S N N C WG L 263 A C D F L G V V M S S S 249 Helix 7
RhGC (CA) RhGC (BE) BR (HS) SRII (NP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR)	242 70 71 65 65 91 113 102 311 142 143 132 137 170 183 171 391 391	** + TLSN	+ S DY A L VV C G F F G A VL P P N D Y A L C L A G F VG A I S AQ L D V F M I G T G M I A A F A A T A D G I M I G T G L VG A L T K V L T V VM L A G F AG AM Y PG T Q I V V I T S G L I A D L S E R A D I G M C T G L A A A MT T S S D I G T I V WG A T S A MA T G A D V L M I T F G I L A F L A Y N elix 4 S G L I S F T M T E A S F T S G L I S F T V A E A G F S E G T F G I L P L Y WE T A A F M P G - VA L Y P N I T T L F M P G - VA L Y P N I T T T L F M P G - VA L Y P T V V V A I V S G - F G W I N Q T I D T F L F C S L A L V Q S V G Y S WA Y S E G F F G V S V Y G S T V G H T WG L V D I R T E E W T WC 442 442	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L WY I C G V 136 AL L F R WA F Y A I S C 169 Y - V K V I F F C L G L 182 K - V MS I L F Y M V A W 170 Helix 5 * A MI D I G A V Y F L T L V 390 MI D I G A V Y F L T L V 390 MI D G A V Y F L T L V 390 V L D L S A Y G F G V 222 V L D V S A Y G F G L 122 V L D V S A Y G F G L 121 L P F F S K V G F S F L 216 V L D V F A Y Y F A F I 248 A C D F L G V V F F S S 249 helix 7
RhGC (CA) RhG (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR) HKR1 (CR) BR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR) HKR1 (CR) RhGC (BE) DeltaR (HT) BR (HS) SRII (NP) ASR (Sp.N) HaloR (HS) ChR2 (CR) HKR1 (CR)	2422 700 711 655 655 911 1133 102 3111 1422 1337 1700 1833 1711 3911 3931 2233	** + TLSN	+ S DYALVVCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMIGTGUVGAITXU LDVVMLAGFAGAMVPG TQIVVITSGLIADLSER ADIGMCVTGLAAAMTTS S DIGTIVWGATSAMATG ADVLMITFGILAFLAYN elix 4 S G MLSFTMTEASFT S G LISFTVAEAGFS E GTFGILPLYWETAAFM G - AGIVPLNIETLFM G - AGIVPLNIETLFM S G - FGWINQTIDTFFC G LALVQSVGVTSWAYS S G - C LVDIRTEEWTWC 442 442 442 241 240	* Y P WG N L F N I L S - C 310 P WG D L A H F V S - C 310 P - G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L WY I C G V 136 AL L F R WA F Y A I S C 169 Y - V K V I F C L G L 182 K - VMS I L F YMV A W 170 * A MI D I G A V F L T L V 390 MI D I G A V F L T L V 390 MI D I G A V F L T L V 390 V L U S A V G F G V 222 V L V S A V G F G F G L 212 L D F F S, V G F G F L 211 L P F F S, V G F G F L 216 V L D V F A K Y V F A F I 248 A C F L G V M F S S S 249 helix 7
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRII (HP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR) BR (HS) SRII (NP) ASR (Sp. N) HaloR (HS) SRII (NP) HaloR (HS) SRII (NP) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA)	2422 700 711 655 65 911 113 102 3111 1422 137 1700 183 171 391 391 223 223 223 223 2212	** + TLSN	+ S DYALVUCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMIGTGLVGAITKV LNTVVMLAGFAGAMVPG TQIVVITSGLIADLSER ADIGMCVTGLAAAMTTS S DIGTIVWGATSAMATG ADVLMITFGILAFLAYN elix 4 S G LISFTVAEAGFS G - KISFTVAEAGFS G - FGILPLYWETAAFM G - AGIVPLNIETLLFM G - AGIVPLNIETLLFF G LVSTVAEAGFS G - FGWINQTIDTFLFC E G LALVQSVGVTSWAYS S G LVDIRTEEWTWC 442 442 442 442 241 249 249 249 241 249 241 242 241 242 241 242 241 244 241 241 241 241 244 241 24	* Y P WG N L A H F V S - C 310 P - G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - J E R Y A L F G MG A I D - WV R Y L WY I C G V 136 AL L F R WA F Y A I S C 169 Y - V K V I F C L G L 182 K - V M S I L F Y M V A W 170 MI D I G A K V F L T L V 390 MI D I G A K V F L T L V 390 V L D S A V G F G V 222 V D V S A V G F G C V 222 V D V S A V G F G C V 222 V D V S A V G F G L I 222 V L V S A V G F G L I 222 V L V S A V G F G L I 222 V L V S A V G F G L I 222 V L V S A V G F G L I 222 V L V S A V G F G L I 222 V L V S A V G F G L I 222 V L V S A V G F G L I 222 V L V S A V G F G L I 222 V L V S A V G F G S F L 216 V L V F A K Y V F A F I 248 I DL M S N C W G L S S 249 helix 7
RhGC (CA) RhGC (BC) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA) HKR1 (CR) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA) SRI (HP) DeltaR (HT) BR (HS) SRI (HS) SRI (HS) SRI (HS) SRI (HS) SRI (HS) SRI (HS) SRI (HS)	2422 700 711 655 65 911 113 102 3111 142 1433 1322 137 1700 1833 171 3911 3911 3233 2233 2232 2212 217	** + TLSN	+ s DYALVVC G F F G A VL PP NDYALCLA G F VG A I S AQ LDVFMIGTGMIAAFAAT ADGIMICTG VG A I S AQ LDVVTSGLIADLSET S U GTIVVG A S AMATG ADIGACVTGLAAAMTS S DIGTIVVG AT S AMATG ADVLMITFGILAFLAYN elix 4 S G ML S FTMTEASFT S G LISFTVAEAGFS S T FGILPLYWETAAFM FG - AGIVPLNIETLLFM PG - VALLTPTVDVALIV S - FGWINQTIDTFLFC EGLALVQSVGVTSWAYS EG - FGVLSVGGSTVGHT MG LVDIRTEEWTWC 442 442 442 442 444 442 444 444 444 44	* Y P WG N L F N I L S - C 310 P + G T R I A WWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A I D + W R Y L WY I C G V 136 AL L F R WA F Y A I S C 169 Y - V K V I F C L G L 182 K - VMS I L F Y M V AW 170 helix 5 * A MI D I G A V F L T L V 390 V L D S A V G F G V 222 V D V A K V G F G C V 222 V D V A K V G F G C L 222 V D V A K V G F G C L 222 V D V A K V G F G C L 222 V D V A K V G F G C L 222 V D V A K V G F G C L 222 V D V A K V G F G C L 222 V D V A K V G F G C L 222 V D V A K V G F G C L 223 A C D F L G V V M F S S S 249 helix 7
RhGC (CA) RhGC (BH) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp. N) HaloR (HS) ChR2 (CR) HKR1 (CR) BR (HS) SRI (HP) ASR (Sp. N) HaloR (HS) ChR2 (CA) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (BH) DeltaR (HF) SRI (HP) SRI (HP)	2422 242 70 71 65 91 113 102 311 131 142 143 132 137 170 183 171 391 391 223 223 212 2217 249	** + TLSN PVEPANYLEWIATCPVLILLIS EITQADHNAWGVYF TMAN PVEPANYLEWIATCPVLILLIS EITQADHNAWGVYF TMAN PVEPANYLEWIATCPVLILLIS EITQADHNAWGVYF TMAN PVEPANYLEWIATCPVLILLIS EITQADHNAWGVYF TMAN PVEPANYLEWIATCPVLILLIS EITQADHNAWGVYF YGD EALTIYWAIYADWLFTTPLLLLDLG LLAGANRNTIATLIG FGG CANDADQTILLALVG EITQADHONQGTILALVG FGG AFFASFWWAIYADWLFTTPLLLSISWTAMGFIKKDWTIATLIGFLMS MPAGHALAGEMVRSQWGIYITWALSTPMLLALG LLAGUDVDLGSLFTVIA GR CHUNTWALTTPAMYLLS ISDFSRLKVYSVML helix 3 helix 3 </th <th>+ s DY A L V V C G F F G A V L P P N D Y A L C L A G F V G A I S AQ L D V F M I G T G M I A A F A A T AD G I M I G L V G A L T K V L N T V V M L A G F AG AM V P G T Q I V V I T S G L I A D L S E R A D I G M C V G L A A A M T S S D I G T I V W G A T S A M A T G A D V L M I T F G I L A F L A Y N elix 4 s G I L S F T M T E A S F T S G L J S F T V A E A G F S G T F G I L P L Y W E T A A F M F G - AG I V P N I E T L F M P G - AG I V P N I T L L F M P S - V A L L T P T V D V A L I V S G - F G V L S V Y G S T V G H T MG L V D I R T E E W T WC 442 442 442 442 442 442 442 442 442 44</th> <th>* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - 1 E R Y A L F G MG A 131 D - WY R Y L WY I C G V 136 AL L F RWAF Y A I S C 169 Y - V K V I F F C L G L 182 K - VMS I L F YMV AW 170 Helix 5 * A MI D I G A V F L T L V 390 W L D L S A V G F G L 222 Y L D V A V G F G L 222 Y L D V A V G F G F I 211 L P F S K V G F S F L 216 U L D Y A V Y F A T L 248 I D L M S N C WG L 263 A C P L G V WF S S S 249 Helix 7</th>	+ s DY A L V V C G F F G A V L P P N D Y A L C L A G F V G A I S AQ L D V F M I G T G M I A A F A A T AD G I M I G L V G A L T K V L N T V V M L A G F AG AM V P G T Q I V V I T S G L I A D L S E R A D I G M C V G L A A A M T S S D I G T I V W G A T S A M A T G A D V L M I T F G I L A F L A Y N elix 4 s G I L S F T M T E A S F T S G L J S F T V A E A G F S G T F G I L P L Y W E T A A F M F G - AG I V P N I E T L F M P G - AG I V P N I T L L F M P S - V A L L T P T V D V A L I V S G - F G V L S V Y G S T V G H T MG L V D I R T E E W T WC 442 442 442 442 442 442 442 442 442 44	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - 1 E R Y A L F G MG A 131 D - WY R Y L WY I C G V 136 AL L F RWAF Y A I S C 169 Y - V K V I F F C L G L 182 K - VMS I L F YMV AW 170 Helix 5 * A MI D I G A V F L T L V 390 W L D L S A V G F G L 222 Y L D V A V G F G L 222 Y L D V A V G F G F I 211 L P F S K V G F S F L 216 U L D Y A V Y F A T L 248 I D L M S N C WG L 263 A C P L G V WF S S S 249 Helix 7
RhGC (CA) RhGC (BE) DeltaR (HT) BR (HS) SRI (HP) ASR (Sp N) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CBE) DeltaR (HT) BR (HS) ChR2 (CR) HKR1 (CR) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA) RhGC (CA) SRI (NP) ASR (Sp N) HKR1 (NP) ASR (Sp N) HaloR (HS) SRI (NP) ASR (Sp N) HaloR (HT) SRI (NP) ASR (Sp N) HaloR (HT) SRI (NP)	2422 242 70 71 65 91 113 102 311 131 142 143 132 137 170 183 171 391 223 223 212 2217 249 264	** + TLSN	+ s DYALVVCGFFGAVLPP NDYALCLAGFVGAISAQ LDVFMIGTGMIAAFAAT ADGIMIGTGMIAAFAAT LDVVMLAGFAGAMVPG TQIVVITSGLIADLSER DIGTIVWGATSAMATG SDIGTIVWGATSAMATG SDIGTIVWGATSAMATG CIIXAA SGLISFTVAEAGFS EGTFGILPLYWETAAFM EG-AGIVPLNIETLFM PG-VALLTPTVDVALIV SG-FGWINQTIDTFLFC EGLALVSVGVTSWAYS EG-FGVLSVYGSTVGHT MGLVDIRTEEWTWC 442 442 442 442 444 442 444 444 444 44	* Y P WG N L F N I L S - C 310 Q P WG D L A H F V S - C 310 P - G T R I AWWG I S T 141 Y - S Y R F V WWA I S T 142 - I E R Y A L F G MG A 131 D - WV R Y L W I C G V 136 AL L F R WA F Y A I S C 169 Y - VK V I F F C L G L 182 K - VMS I L F YMV AW 170 Pelix 5 * 0 MI D I G A V F L T L V 390 MI D I G A V F L T L V 390 VL D L S A V G F G V 222 Y L D L Y T N V G F G F I 211 L P F F S N V G F S F L 216 VL D V S A V V F A T L 248 A C F L G

Abb. 48 Sequenz-Vergleich der Rhodopsin Domänen verschiedener Spezies Die Sequenzen wurden mithilfe von ClustalO¹⁸⁸ aligniert, die Farbgebung entspricht einer Sequenz-Konservation von 30 %. Die vorhergesagten Helices (Magenta, JPred4²⁰³) für CaRhGC sind unterhalb der Sequenzen dargestellt, Die Domänenstarts sind angegeben. Konservierte Reste sind durch Symbole oberhalb des Vergleichs gekennzeichnet. Dazu zählen:

aromatische Aminosäuren, die den Retinal Chromophor umgeben (rote Sterne), das Retinalbindende Lys384 (schwarzes Dreieck) in Helix 7, die vermeintlichen Gegenionen Glu254 und Asp380 (grüne Sterne), die D/C Paar Reste Cys259 und Asp283, die für die Photozyklus-Kinetik in Channelrhdopsinen wichtig sind (schwarzes Plus). Ile222 (schwarzer Kreis) ersetzt K93, das bei ChR2 eine Rolle bei der Ladung der Gegenionen spielt. Der Vergleich umfasst folgende Sequenzen: die Rhodopsin-Domänen der Rhodopsin-Guanylylzyklasen (RhGC) aus *Catenaria anguillulae* (CA) (gb: MF939579), *Blastocladiella emersonii* (BE) (gb: AIC07007.1); Delta-Rhodopsin: DeltaR (HT) aus *Haloterrigena thermotolerans* (Uniprot: I4DST7); Bakteriorhodopsin: BR (HS) aus *Halobacterium salinarum* (gb: 10580964); sensorisches Rhodopsin II: SRII (NP) aus *Natronomonas pharaonis* (gb: 510870); Anabena sensorisches Rhodopsin: *Anabaena SR* (*Sp.N*) aus *Nostoc sp.* PCC7120 (GB: 17132260); Halorhodopsin: HaloR (HR) aus *Halobacterium salinarum* (gb: 169235207); Kanalrhodopsin: ChR2 (CR) aus *Chlamydomonas reinhardtii* (gb: 158280944); und Histidinkinase-Rhodopsin: HKR1 (CR) aus *Chlamydomonas reinhardtii* (gi: 410699688).

5.2 Sequenz-Vergleich des Coiled-Coils und der Zyklase Domäne

Abb. 49 Sequenz-Vergleich des Coiled-Coils und der Zyklase Domäne

Der Vergleich umfasst Sequenzen unterschiedlicher Zyklasen mit vorausgehendem Coiled-Coil und CTE Motiv. Der Vergleich wurde mithilfe von ClustalOmega¹⁸⁸ und MAFFT erstellt (Farben entsprechen 20 % Konservation), die Sequenz-Zugangsnummern sind jeweils vermerkt. Der jeweilige Domänen-beginn ist oberhalb des Vergleichs dargestellt. Der rote Stern (*) markiert das konservierte Prolin des CTE Motivs. Die 7 konservierten Reste der Nukleotid-Bindetasche sind markiert. B = Basen-bindende Reste, Me = Metallion-bindende Reste, R = Ribose-bindende Reste, Tr = Übergangszustands-stabilisierende Reste, P γ = γ -Phosphat-bindender Rest. RhGC = Rhodopsin-Guanylylzyklase, sRhGC = short = verkürzte RhGCs, AC = Adenylylzyklase, Ret-GC = Guanylylzyklase der Retina, ANP = Atriales natriuretisches Peptid, GCC = Guanylylzyklase-C.

5.3 Coiled-Coil Wahrscheinlichkeit der Ca/BeRhGC N'-Termini

COILS version 2.1 using MTIDK matrix. no weights Input file is /pbil/servers/npsa/www/tmp/ebc0713fcaef.tmpseq

		Fenster = 14		Fenster = 21			Fenster = 28			
#	Sequenz		score	Wahrsch.		score	Wahrsch.		score	Wahrsch.
118	S	С	1.501	0.187	g	0.880	0.000	g	0.726	0.000
119	K	d	1.564	0.331	а	0.884	0.000	а	0.763	0.000
120	Q	е	1.662	0.628	b	0.922	0.000	b	0.763	0.000
121	S	f	1.662	0.628	С	0.922	0.000	С	0.763	0.000
122	А	g	1.662	0.628	d	0.922	0.000	d	0.763	0.000
123	L	а	1.662	0.628	е	0.922	0.000	е	0.763	0.000
124	Q	b	1.662	0.628	f	0.922	0.000	f	0.763	0.000
125	Q	С	1.662	0.628	g	0.922	0.000	g	0.763	0.000
126	Y	d	1.662	0.628	а	0.922	0.000	а	0.763	0.000
127	Q	е	1.662	0.628	b	0.922	0.000	b	0.763	0.000
128	Т	f	1.662	0.628	С	0.922	0.000	С	0.763	0.000
129	N	g	1.662	0.628	d	0.922	0.000	d	0.763	0.000
130	I	а	1.662	0.628	е	0.922	0.000	е	0.763	0.000
131	А	b	1.662	0.628	f	0.922	0.000	f	0.763	0.000
132	D	С	1.662	0.628	g	0.922	0.000	g	0.763	0.000
133	М	d	1.662	0.628	а	0.922	0.000	а	0.763	0.000

Vorhersage nach Lupas et al 205

COILS version 2.1 using MTIDK matrix. no weights Input file is /pbil/servers/npsa/www/tmp/ebc0713fcaef.tmpseq

		Fer	nster = 14	ļ	Fer	ster = 21		Fenster = 28			
	Sequen						Wahrsch				
#	Z		score	Wahrsch.		score			score	Wahrsch.	
74	V	b	1.255	0.012	b	1.005	0.000	b	0.903	0.000	
75	G	С	1.360	0.040	С	1.027	0.000	С	0.944	0.000	
76	L	d	1.360	0.040	d	1.108	0.002	d	1.000	0.000	
77	R	е	1.360	0.040	е	1.108	0.002	е	1.000	0.000	
78	S	f	1.360	0.040	f	1.108	0.002	f	1.000	0.000	
79	R	g	1.360	0.040	g	1.108	0.002	g	1.000	0.000	
80	К	а	1.360	0.040	а	1.108	0.002	а	1.000	0.000	
81	S	b	1.360	0.040	b	1.108	0.002	b	1.000	0.000	
82	E	С	1.360	0.040	С	1.108	0.002	С	1.000	0.000	
83	S	d	1.360	0.040	d	1.108	0.002	d	1.000	0.000	
84	Q	е	1.360	0.040	е	1.108	0.002	е	1.000	0.000	
85	А	f	1.360	0.040	f	1.108	0.002	f	1.000	0.000	
86	N	g	1.360	0.040	g	1.108	0.002	g	1.000	0.000	
87	V	а	1.360	0.040	а	1.108	0.002	а	1.000	0.000	
88	R	b	1.360	0.040	b	1.108	0.002	b	1.000	0.000	
89	G	С	1.360	0.040	С	1.108	0.002	С	1.000	0.000	
120	G	е	1.327	0.027	b	1.008	0.000	b	0.887	0.000	
121	S	f	1.327	0.027	С	1.070	0.001	С	0.887	0.000	
122	А	g	1.327	0.027	d	1.070	0.001	d	0.887	0.000	
123	L	а	1.327	0.027	е	1.070	0.001	е	0.887	0.000	
124	А	b	1.327	0.027	f	1.070	0.001	f	0.887	0.000	
125	N	С	1.327	0.027	g	1.070	0.001	g	0.887	0.000	
126	Y	d	1.327	0.027	а	1.070	0.001	а	0.887	0.000	
127	Q	е	1.327	0.027	b	1.070	0.001	b	0.887	0.000	
128	S	f	1.327	0.027	С	1.070	0.001	С	0.887	0.000	
129	А	g	1.327	0.027	d	1.070	0.001	d	0.887	0.000	
130	М	а	1.327	0.027	е	1.070	0.001	е	0.887	0.000	
131	S	b	1.327	0.027	f	1.070	0.001	f	0.887	0.000	
132	E	С	1.327	0.027	g	1.070	0.001	g	0.887	0.000	
133	L	d	1.327	0.027	а	1.070	0.001	а	0.887	0.000	

Vorhersage nach Lupas et al ²⁰⁵

5.4 Coiled-Coil Wahrscheinlichkeit des CaRhGC Linkers

COILS version 2.1 using MTIDK matrix. no weights Input file is /pbil/servers/npsa/www/tmp/ebc0713fcaef.tmpseq

		Fe	enster =	14	Fe	enster = 2	21	Fe	enster =	28
#	Sequenz		score	Wahrsch.		score	Wahrsch.		score	Wahrsch.
397	Е	b	1.584	0.388	а	1.474	0.572	а	1.281	0.083
398	Q	с	1.584	0.388	b	1.632	0.966	b	1.395	0.670
399	А	d	1.584	0.388	с	1.632	0.966	С	1.395	0.670
400	Q	e	1.584	0.388	d	1.632	0.966	d	1.421	0.807
401	Ν	f	1.584	0.388	e	1.632	0.966	е	1.450	0.904
402	Q	f	1.707	0.749	f	1.632	0.966	f	1.450	0.904
403	К	g	1.707	0.749	g	1.632	0.966	b	1.450	0.904
404	V	а	1.707	0.749	а	1.632	0.966	а	1.450	0.904
405	Е	b	1.707	0.749	b	1.632	0.966	b	1.450	0.904
406	А	с	1.707	0.749	с	1.632	0.966	С	1.450	0.904
407	I	d	1.707	0.749	d	1.632	0.966	d	1.450	0.904
408	Т	e	1.707	0.749	e	1.632	0.966	e	1.450	0.904
409	А	f	1.707	0.749	f	1.632	0.966	f	1.450	0.904
410	I	g	1.707	0.749	g	1.632	0.966	g	1.450	0.904
411	А	а	1.707	0.749	а	1.632	0.966	а	1.450	0.904
412	E	b	1.707	0.749	b	1.632	0.966	b	1.450	0.904
413	E	с	1.707	0.749	с	1.632	0.966	С	1.450	0.904
414	L	d	1.707	0.749	d	1.632	0.966	d	1.450	0.904
415	E	e	1.707	0.749	е	1.632	0.966	e	1.450	0.904
416	S	f	1.672	0.657	f	1.632	0.966	f	1.450	0.904
417	Q	g	1.672	0.657	g	1.632	0.966	g	1.450	0.904
418	I	а	1.672	0.657	а	1.632	0.966	а	1.450	0.904
419	Т	b	1.543	0.278	b	1.576	0.904	b	1.450	0.904
420	Ν	с	1.543	0.278	с	1.576	0.904	С	1.450	0.904
421	С	d	1.520	0.225	d	1.530	0.797	d	1.450	0.904
422	D	e	1.520	0.225	е	1.465	0.533	e	1.450	0.904
423	А	f	1.520	0.225	f	1.429	0.364	f	1.450	0.904
424	I	g	1.520	0.225	g	1.382	0.194	g	1.450	0.904
425	L	а	1.520	0.225	а	1.382	0.194	а	1.450	0.904
426	Q	b	1.479	0.150	b	1.382	0.194	b	1.450	0.904
427	К	с	1.428	0.086	с	1.382	0.194	с	1.450	0.904
428	М	d	1.331	0.029	d	1.382	0.194	d	1.450	0.904
429	М	e	1.147	0.003	e	1.356	0.129	е	1.399	0.698

Tabelle 15 Coiled-Coil Vorhersage des CaRhGC Linkers

Vorhersage nach Lupas et al 205

5.5 Python Skript zur Auswertung der TEVC Daten

def anaB(Filter, illutime, illustartIn=None, anatimeIn=None):						
script title: ana_singleTrace_fit_20150402.py corrected Slope2080 = Risteime 2080!!!						
author: Ulrike Scheib, PhD, AG Hegemann, HU Berlin, Experimental Biophysics						
Filter entweder "K", 530						
illutime length of illumination in ms						
illustartIn start of illumination in ms, standard=15000 ms						
anatimeIn peak analysis window in ms, standard=20000 ms						
TOV = int #timepoint at measurement start						
TOL = int #timepoint at light=on						
EOL = float						
if illustartIn is None:						
illustart = 15000						
else:						
illustart=illustartIn						
if anatimeln is None:						
anatime = 20000						
else:						
anatime=anatimeIn						
#stf.set_channel(1)						
#sti.uliselect_all()						
print "filename filename", "traceNumber", "filenumber", "Transmission", "Filter", "StartofMEasurment(TOV)ms","StartofLight(TOL)[ms]","illutime[ms]","EndofLight[ms]","anati me[ms]","peakValue[nA]fromBase", "PeakIndex[ms]","latency=peakIndex-EOL[ms]", "onset=footIndex-TOL[ms]", "Risetime20-80[ms]", "thresholdTime[ms]toTOL", "thresholdValue[nA]","Halfwidth[ms]=blueCircles", "Index[ms]T50left", "Index[ms]T50right", "T50leToPeak[ms]", "PeaktoT50ri[ms]", "basevaluestart" , "BasevalueEND[nA]", "channelclosure[%]" stf leastsq(0) keys() "scriptVersion"						
for n in range(stf.get_size_channel()):						
stf.set_channel(1) # wichtig damit er immer auf 1 bleibt						
stf.set_trace(n) # Wichtig damit er durchläuft für die einzelnen traces						
stf.set_peak_mean(1) # wichtig damit voltage Peak am Anfang& Ende Eraknnt						
wird						

Tabelle 16 Python-basiertes Stimfit Skript zur Auswertung der TEVC Daten

part 1: determine measurement end (voltage end)
stf.set_base_start(5000)
stf.set_base_end(6000)
stf.set_peak_start(stf.get_size_trace()-5000)
stf.set peak end(stf.get size trace()-10)
stf.measure()
endvol = stf.peak index() # time point when measurement ends (voltage peak),
important for later
#print endvol
#part 2: determine measurement start (voltage start)
stf.set_base_start(200) # muessen hier sitzen!
stf.set_base_end(300)
stf.set_peak_start(300.0)
stf.set_peak_end(2000.0)
stf.measure()
part 3: determine light start
TOV=stf.peak_index()-2 # little correction
TOL=TOV+illustart # start of LIGHT
EOL=TOL+illutime #EOL=EndofLight
stf.set_peak_start(TOL) #sets peak cursor to time when light ist swichted on
stf.set_peak_end(TOL+anatime)
stf.set base start(TOL-2000)
stf.set base end(TOL)
#stf.subtract base() # if you want to analyze the fileseries you cannot work that
easily with subtract_base(), since it openes a new window of the trace
stf.set_peak_mean(10) # calulates within 10 ms window the peak!
stf.measure() # important since you rely on the the calculated values (fit cursor
positioning)
basevaluestart=stf.get_base() #basevaluestart is the baseline at the beginning
#print basevaluestart, "basevaluestart"
peakindex=stf.peak_index() # for fit cursor placement!, kein n in der Klammer
(datuer select_trace(n) open!)
part 4: assessment of t50 value and final baselinevalue -> problem das klappt nicht
imnmer! => und dann zerhaut es dir die Analyse
stf.set base start(stf.t50right index()-20)
stf.set base end(stf.t50right index()+20)
stf.measure()
t50value=(stf.get_base()-basevaluestart)/1000
IIIII

stf.set_base_start(endvol-2000) # final base Value 2 s before measurement end stf.set base end(endvol-10)

stf.measure()

basevalueEND=(stf.get_base()-basevaluestart)/1000

#part 5: sets cursors back to original baseline, to do the calculation for FIT and peak Calculation

stf.set_base_start(TOL-2000)

stf.set_base_end(TOL)

stf.measure()

channelclosure=100/(stf.get_peak()-stf.get_base())*(stf.get_peak()-stf.get_base()basevalueEND*1000) #calulates the channelcolsure in %

part 6: FIT monoexponential starts here

stf.set_fit_start(peakindex) #placement of the fit cursors, variabel peakindex

#print stf.get_fit_start()

stf.set_fit_end(endvol-10)

stf.leastsq(0) #monoexponentialfit, befehl muss hier stehen, damit der print befehl dann funktioniert

#print stf.get_fit_start()

#part 7: peak analysis

print stf.get_filename(), n, ".",".", Filter, TOV ,stf.get_peak_start(), illutime, TOL+illutime ,anatime, (stf.get_peak()-stf.get_base())/1000, stf.peak_index(), stf.peak_index()-EOL, stf.foot_index()-TOL, stf.get_risetime(), stf.get_threshold_time()-TOL, (get_threshold_value()get_base())/1000, stf.get_halfwidth(), stf.t50left_index(), stf.t50right_index(), stf.peak_index()stf.t50left_index(), stf.t50right_index()-stf.peak_index(), basevaluestart/1000, basevalueEND, channelclosure, stf.leastsq(0).values(), "ana_singleTrace_fit_20150421.py"

return

5.6 Ergänzende elektrophysiologischen Messungen

Konstrukt	Belichtung 530 nm, 0.13 mW mm ⁻ 2	n	Daten	max. Amplitude (nA)	Anfangs- steigung (nA/ms)	Zeit bis Signal- einsatz (ms) "onset"	Zeit bis linkes Halb- maximum (ms)	Zeit bis Maximum (ms)	Halbwerts- breite (ms)	Zeit zw. Peak und rechtem Halb- maximum(ms)	Notiz
wtBeRhGC	500 ms	9	MW	-345.21	-0.70	451.51	814.62	1485.67	4054.49	3383.45	E36
	530 nm		STE	133.49	0.32	25.06	48.58	106.81	883.06	783.10	
Tr43BeRhGC	500 ms	8	MW	-1088.30	-1.86	270.92	604.45	1219.13	11118.05	10503.37	E36
	530 nm		STE	218.99	0.48	40.28	46.34	71.60	1887.80	1855.10	
Tr79BeRhGC	500 ms	4	MW	-418.89	-1.04	424.08	712.44	1192.50	2939.64	2459.58	E36
	530 nm		STE	157.40	0.57	76.46	102.79	146.99	670.29	704.28	
wtBeRhGC	2000 ms	7	MW	-2006.16	-1.22	690.55	1295.73	2617.86	8146.65	6824.52	E36
	530 nm		STE	819.09	0.49	122.18	89.41	82.85	1150.41	1021.31	
Tr79BeRhGC	2000 ms	7	MW	-1003.13	-0.58	335.21	872.05	2708.43	10565.62	8729.25	E36
	530 nm		STE	275.08	0.12	125.58	132.14	182.12	1855.90	1646.84	
wtBeRhGC	2000 ms	8	MW	-1800.23	-1.08	453.63	1133.15	2830.38	10216.23	8519.00	E35
	530 nm		STE	369.09	0.23	73.12	58.84	108.93	1396.17	1280.93	
Tr139BeRhGC	2000 ms	20	MW	-92.50	-0.07	1269.17	1855.93	2642.55	3179.66	2393.03	E35
	530 nm		STE	10.27	0.01	78.76	51.44	55.20	339.84	300.79	

Tabelle 17 Parameter der elekt	ronhysiologischen Messungen	(TEVC aus Abb. 19 und ergänzende Daten)) der verkürzten BeRhGC Varianten
i abone i i i aranneter aer erene	i opiny storogisement intessungen	(111 C dub 11001 1) und el gunzende Duten	, act verhalleten bertinge varhanten

Konstrukt	Belichtung 530 nm, 0.13 mW mm ⁻²	n	Daten	max. Amplitude (nA)	Anfangs- steigung (nA/ms)	Zeit bis Signal- einsatz (ms) "onset"	Zeit bis linkes Halb- maximum (ms)	Zeit bis Maximum (ms)	Halbwerts- breite (ms)	Zeit zw. Peak und rechtem Halb- maximum(ms)	Notiz
CaRhGC	2000 ms	8	MW	-439.5	-0.3	641.7	1246.9	2644.4	10350.8	8953.3	E40
	530 nm		STE	79.6	0.1	92.1	102.4	117.3	1881.9	1776.3	
BeRhGC	2000 ms	5	MW	-133.0	-0.2	1200.7	1733.1	2419.6	4128.6	3442.0	E40
	530 nm		STE	46.2	0.1	97.2	149.2	75.4	743.9	685.1	
CaRhGC	500 ms	4	MW	-1064.4	-1.7	455.7	770.6	2790.0	12404.2	10384.8	E36
	530 nm		STE	235.8	0.4	91.8	124.9	477.8	1313.3	1337.9	
BeRhGC	500 ms	8	MW	-350.6	-0.7	463.0	828.8	1492.6	3771.8	3108.0	E36
	530 nm		STE	150.1	0.4	25.4	52.5	119.9	947.1	831.1	
CaRhGC	200 ms	9	MW	-1218.5	-3.0	372.8	665.5	1319.7	9457.9	8803.7	E36
	530 nm		STE	272.6	0.8	71.2	116.0	195.0	1174.5	1121.9	
BeRhGC	200 ms	6	MW	-119.2	-0.2	274.8	641.9	1520.3	5099.8	4221.4	E36
	530 nm		STE	33.9	0.1	63.6	52.4	92.3	763.8	660.8	

Tabelle 18 Parameter der ergänzenden elektrophysiologischen Messungen (TEVC, Abb. 27) zum Vergleich von BeRhGC und CaRhGC

Konstrukt	Belichtung 530 nm, 0.13 mW mm ⁻²	n	Daten	max. Amplitude (nA)	Anfangs- steigung (nA/ms)	Zeit bis Signal- einsatz (ms) "onset"	Zeit bis linkes Halb- maximum (ms)	Zeit bis Maximum (ms)	Halbwerts- breite (ms)	Zeit zw. Peak und rechtem Halb- maximum(ms)	Notiz
CaRhGC	500 ms	9	MW	-1208.51	-1.72	508.15	872.69	1755.67	8001.04	7118.06	E48
	530 nm		STE	321.87	0.49	67.62	95.38	100.33	1491.10	1504.32	
Tr43CaRhGC	500 ms	7	MW	-3156.31	-3.95	403.63	793.88	2007.29	15406.05	14192.65	E48
	530 nm		STE	528.51	0.87	39.58	53.62	69.66	3663.93	3568.84	
CaRhGC	100 ms		MW	-1394.58	-2.27	329.61	695.70	1691.11	6046.93	5051.52	E49
	530 nm		STE	370.13	0.66	28.08	74.08	108.23	637.80	608.60	Мо
Tr43CaRhGC	100 ms		MW	-1807.23	-2.77	308.94	665.57	1828.25	9615.66	8452.98	E49
	530 nm		STE	375.88	0.85	17.89	40.05	106.73	1069.51	1087.36	Мо
CaRhGC	1000 ms		MW	-460.50	-0.45	882.03	1464.34	2492.43	6177.93	5149.84	EM1
	530 nm		STE	221.51	0.19	112.75	170.11	219.70	1447.24	1399.58	Mo
Tr43CaRhGC	1000 ms		MW	-1627.32	-2.15	537.83	888.72	2354.29	30540.71	20516.86	EM1
	530 nm		STE	369.38	0.60	148.71	175.41	129.27	8741.54	4072.71	Мо

Tabelle 19 Parameter der elektrophysiologischen Messungen (TEVC aus Abb. 31 und ergänzende Daten) der verkürzten CaRhGC Variante, tr43
5.7 Sequenz-Vergleich der RhGCs aus *Blastocladiomycota* und *Chytridiomycota*

BeRhGC/1-625 CaRhGC1-640 new GpRhGC 618394/1-515 new RgRhGC 559232/1-550 new RgRhGC 781511/1-549 new RgRhGC 47233/1-509 AmRhGC 05651/-365 AmRhGC 07932/1-748 AmRhGC 07932/1-748	1 MK D K D N N L R G A C S S C N - C P E Y C F S P - T 1 MK D K D N N L R G A C S G C S - C P E Y C Y S P - T 1 MT D L Q R G A C G N C T - C S V Y Q V Q T - G 1 MD D V Q R G A C E N C N - C T L Y Q V Q T - A 1 MK D K D N N L R G A C T 1 MK D K D N N L R G A C T - C P E Y C F S P - S 1 MR D K D N Q M R G A C T G C K T C A E Y L P A A N G	IT L C D D C K C S V T K H P I V E Q P L S R NG - S F R S S G A S L L P S P T L C D D C K C S V T K H P I V E Q P L T R NG - S F R S S G A S L L P S P K R C R G C N HG AI Y HE A I V R A A K S 	S P N V K I T S T V G L R S R K S E S Q AN V R G • • • • 5 M I S N S I S Q P N I K V T G S S T A S S N A NM R N R Q N N S • • • • L S V S N V I S A V N V L K V G G G S A G S S V L • R N R K D G S K S S S M L G G S A V N V L K V G G G S A G S S V L • R N R K D G P V K S S S S M L G G S S P V K S S T D Q • • • • • • • P F F D G F D G N F L L T I I	N 95 - 47 - 46 - 59 5 98 R 91
BeRhGC/1-425 CaRhGC1-640 new GpRhCC 18394/1-515 new RgRhGC 559232/1-550 new RgRhGC 559232/1-550 new RgRhGC 847233/1-509 AmRhGC 09565/1-85 AmRhGC 0932/1-748 AmRhGC 13844/1-54	96 S G S R S N N S G G AG G G S G G S S S S K G G 97 S T S S A S S S N V S S P A N S R P G S P S K Q 1	ALANYQSAMSELWSWNMMLSTPSLKFLTVQFTTWIVLT ALQQYQTNIADNWSWDMMLSTPSLKFLTQQFIMWAILTY ISKSQWKTKLDSYSN-SDKYNYSTVHHYSSSFVWCLVTC GKTDWKKKLAAK-AEKDQSGTVFYYRNYAAWMYVT GKTNWKDKLQAAM-AEKDNSGAYYYYFRNFVWSVLTY ALTKARDALANTSAKDPYHEAKPMGFVWLNFGMWLAAYO ITMDEFRANLQEMASWEMMMSTPSLKFLTVQFAVWLTVT ITMDEFRANLQEMASWEMMMSTPSLKFLTVQFAVWLTVT ITMQEFRANLQEMASWEMMMSTPSLKFLTVQFAVWLTVT ITMQEFRANLQEMASWEMMMSTPSLKFLTVQFAVWLTVT IMDEFRANLQEMASWEMMINTYPALKCLAVHGLUVIAATO	Rh VGAIYTL - FFHERQAYN GWADIWY GYGAFGFGLG AGAFYAL - FIQERQAYN GWADIWY GYGAFGFGIG IGAYKASLTPKKINKFD E DANQWY YNSASAFGFG FGF - YQLANGHKGPTYE GFAIEATAYTACFGIA SGF - YLLGTGYNGPTFD GIADEFYNTAASFGIAN YT IHQRLFGGYHTKAND GNSDFI YKGTFFVFIVA (LLALYT - VAHERPKFN GWADIWY GYGAFGFGVG ULALYT - VAHERPKFN GWADIWY GYGAFGLAIG ALSWYTV - TAHDRQAYN GWADVWY GYGAFGLAIG HONN	. 194 195 75 119 118 77 154 194 177
		CI Ret D/C	р/с	
BeRhGC/1-625 CaRhGC1-640 new GpRhGC 618394/1-515 new RgRhGC 559232/1-550 new RgRhGC 781511/1-549 new RgRhGC 847233/1-509 AmRhGC 09565/1-585 AmRhGC 07932/1-748 AmRhGC 13844/1-634	195 5 F A Y MG F TG AR NP E KA L S L C L L G V N F 196 A F S Y MG F TG AR NP E KA L S L C L L G V N F 196 A F S Y MG F TG AR NP E KA L S L C L L U N V N 120 I Y S F I AF F N AQ NNE K K S L AT C L U N V N 120 I Y S F I AF F N AQ NNE K R L G K V L C V V N F 197 I Y S Y I A Y A N AQ NNE K R L G K V L C V V N F 198 F Y T G Y G I Y G X S A K K S M F V V M M T C G 155 A Y A Y MG F T S AK S P E K R AL S L C L F G V N L 198 A Y M G F T S AK S P E K R AL S L C L F G V N L 198 A F S G M G F F G AK S T E K AMAL AL F G V N Y	SFMSYIIIMLRLTPTIEGTMANPVEPATYLEWIATCPV AFSSYIIIMLRLTPTIEGTLSNPVEPATYLEWIATCPV SLCTVLITARLTPAFKOSNGYPPUDVAFFVEWASTCPSI SMVSYLLQWTGYTVSYTDVYGHPTDPAFFVEWISTCPI AMSSYIMQYTRTTPAFTDYVGYPVDPSFVEWLATCPI VATSWELLVRAGITLLOGACHPVDINHLEWAHDEAN SFSSYVLILLRLTPSLVGTFGNPVEPATYLEWMGTCPVI SFSSYVLILRLTPSLVGTFGNPVEPATYLEWMGTCPVI ALATVVLVLRLSPTIEGSQSNAVEPATYLERLATGPVI 2000	ILL ISE I QYPH - DPYKV I VNDAL CLAGFVGA IS. ILL ISE I QADH - NAWGVYFS DYALVVCG FFGAVLF ILL IGDI KQQS - SAGFSMKF DYVML I CGFMSAITT IYM AEITDNHH - LADNTASADYVLLVLGYSSTFLF IYL IAEITDNHH - MADTTASYDYSLI LGFIAGFLF AYFLGLL ISADQWTI GFTI LESHGLLFGFLASIAF ILL ISE I RFPH - DPFKVVFHDYFLNYMGFFGA IMF ILL ISE I RFPH - DPFKVVFHDYFLNYMGFFGA IMF ILL ISE I RFPH - DPFKVVFHDYLVYL VI AAFMGAVLF HEIX 4	296 297 177 221 220 180 256 296 279
	Ret	Ret F	tet Ret CI RSB	
BeRhGC/1-625 CaRhGC1-640 new GpRhGC 618394/1-515 new RgRhGC 559232/1-550 new RgRhGC 781511/1-549 new RgRhGC 47233/1-509 AmRhGC 0565/1-585 AmRhGC 07932/1-748 AmRhGC 07932/1-748	297 QQ PW GDLAHE V SCLCFSYVVSLWSCFT 298 PY WGNLFNILSCAFFSFVVSLWSSFT 178 - E PFSTYFSAGSLMCFFQVUSLWSST 220 - QFFSEVAAISAATCFFFVVKGFSSMFE 221 - QFFSEVAAISAATCFFFVVKGFSSMFE 221 - QFYSEWFACGSTIFFFVVKGFSSMFE 221 - QFVSEWFACGSTIFFFVVKGFSSMFE 231 - QPVSEWFACGSTIFFFVVSLWGFSSMFE 237 - QEVGLANILSCLGFSVVVSLWMCFT 237 - QEVGLANILSCLGFSVVVSLWMCFT 237 - QEVGLANILSCLGFSVVVSLWMCFT 238 - QFVSLWACFT 249 - VSLWCFT 257 - QEVGLANILSCLGFSVVVSLWMCFT 280 - PFLGNLCSVLSCAGTGVVTHLVMCFT	G A I DG E T Q C N V E K S G L R WI N F S T I T T W	P ITWFSYTSGL IS FT VAE AGFSM ID IGA VFLTLVL PLSWFAFTSGML SFTMT ASFTMI DIGA VFLTLVL PCTFFSTRYGL ITYSGE MCYSIAD IFA VFLTLI L PLSFFTQRSGI VT VETGE WMFCVAD LWS VVFLTFI L ATWWI QRAQI VTVEQGE VLE CVS DIFA VFLTFI L TLAWYL VRHGFWSFETGELHIALGEFCA VV UML IF PVWFSYTTQL IS FTMT EAGFVLTDIGA VFLTWL PVWFSYTTQL IS FTMT EAGFVLTDIGA VFLTWL PVSALAFHAELVSETAA EAAL AVLDIGA VLLTVL	390 391 278 314 313 273 350 390 373
	lcc	СТЕ	IGC Me	
BeRhGC/1-625 CaRhGC1-640 new GpRhGC 618394/1-515 new RgRhGC 559232/1-550	391 V N S T V E Q A Q N Q K V D A I T A I A E E L E N Q I N 392 V N S T V E Q A Q N Q K V E A I T A I A E E L E S Q I T 279 V N A T ME S V Q N E K V S E I S K I A N DME K E I G 315 V N A T L E E S M N S K A K K M E A V A H E I E S Q M A	N C DA IL Q K MM P E G N C DA IL Q K MM P E G N C DA LL E R MM P K E Q A D K LL E K LM P AS	VLEQLENGQATEAKEYESVTVFFDDITNFTVIDS VLEQLENGQATEAKEYESVTVFFDDITNFTVIDS VLDDLENGKAPGAEEYESVTIFFDITNFTVIDS IVLDDLENGKAPGAEEYESVTIFFDUTNFTALSN IVEAMAAGKATGSEEYSSVTVFFDUTNFFALSN	465 466 353 389 388
new RgRhGC 781511/1-549 new RgRhGC 847233/1-509 AmRhGC 09565/1-585 AmRhGC 07932/1-748 AmRhGC 13844/1-634	314 Y NAT L E ESMNS KAK WEAVAS E I ESQMA 274 Y NSY VE EA QI NTY YQMET L TS S L DE GMA 31 V NST VE Q AQ N DK VE A I TA I AE E L EQ MT 391 V NST VE Q AQ N DK VE A I TA I AE E L EQ MT 374 V NST VE HAQ NG VE A I TA I AE E L ETQ VN	QADIALERLIM PAS AS DKLIEKLIPAG NS DAILQ KMM PAD NS DAILQ KMM PAE YVST GVGG R DGS R CVI GVLLMEL RAL NC DAILQ KMM PAT	- VL BQ L SG KATGAE YAS KUVYFSD IN YFDL OK - VL BQ L SG KATGAE YSC VTYFFSD IN YFTY IS SSVL BQ I SG QATEAQEYESVTYFFSD IT NFTY IS - VL EQ I SG QATEAQEYESVTYFFSD IT NFTY IS - VL EQ I NG EATEAQEYESVTYFFSD IT NFTY IS	348 425 493 448
new RgthGC 781511/1-549 new RgthGC 847233/1-509 AmRhGC 09565/1-585 AmRhGC 07932/1-748 AmRhGC 13844/1-634	314 VINATLE ESMINS KAKKMEAVASE IESOMA 274 VINSVEEAQIINTVSQMETLTSSLDEQMA 351 VINSTVEOQONDKVEAITAIAEELEQOMT 391 VINSTVEQAQNDKVEAITAIAEELEQOMT 374 VINSTVEHAQNQKVEAITAIAEELETQVN	GADIALLEALM PAS NS DA ILQ KMP AD NS DA ILQ KMP AD NS DA ILQ KMP AE YVST GVGGR DGSR CVI GVLLMELRAL NC DA ILE KMM PAT	- VL DQ L SG KAT GAE EYS CV TYF SD I IN FTPL QG - VL EQ L SG GAT EAQEYESVTYFF SD I TN FTV ISS SSVL EQ I IS G GATE AQEYESVTYFF SD I TN FTV ISS - VL EQ I IN GEATE AQEYESVTYFF SD I TN FTV ISS - VL EQ I IN GEATE AQEYESVTYFF SD I TN FTV ISS - VL EQ I N GATE AQEYESVTYFF SD I TN FTV ISS - VL EQ I N GATE AQEYESVTYFF SD I TN FTV ISS - VL EQ I N GATE AQEYESVTYFF SD I TN FTV ISS - VL EQ I N GATE AQEYESVTYFF SD I TN FTV ISS - VL EQ I N GATE AQEYESVTYFF SD I TN FTV ISS - VL EQ I N GATE AQEYESV	348 425 493 448
new BghKC 201511/1-549 new RghKC 201511/1-549 mRhGC 09565/1-585 AmRhGC 09565/1-585 AmRhGC 1932/1-748 AmRhGC 1932/1-748 AmRhGC 13844/1-634 BeRhGC/1-625 CRIhGC1-640 new RghKGC 5185171-549 new RghKGC 781511/1-549 new RghKGC 781511/1-549 AmRhGC 09565/1-585 AmRhGC 0932/1-748 AmRhGC 13844/1-634	314 V NATL EES MNS KAK WEAVAS E IES QMA 274 V NNS V EE AQ I NT V S QMETL TS S L DE QMA 315 V NS TV EQ AQ ND KV E A I TA I A E EL E QOMT 391 V NS TV EQ AQ ND KV E A I TA I A E EL E QOMT 374 V NS TV ED AQ ND KV E A I TA I A E EL E QOMT 375 V NS TV EH AQ NQ K V E A I TA I A E EL E QUMT 376 V NS TV EH AQ NQ K V E A I TA I A E EL E QUMT 377 V NS TV EH AQ NQ K V E A I TA I A E EL E QUMT 378 V NS TV EH AQ NQ K V E A I TA I A E EL E QUMT 379 V NS TV EH AQ NQ K V E A I TA I A E EL E TQ VN 354 Q TT T K EMLATL NK L WL E Y DA I A K RWG VI 359 K S S T K DMMA TL NK L WI E Y DV I C K RWG VI 389 K S S T K DML A TL NK L WI E Y DV I C K RWG VI 398 TS TS K DMLA SL NNWI I E Y DK I S K KWG I 494 RT ST K DMMK TL NML WL E Y DA I A K KWG I 449 RT ST K DMMK TL NML WL E Y DA I A K KWG I	ADALLEBLEN PAG NS DA ILQ KMM PAD NS DA ILQ KMM PAD NS DA ILQ KMM PAD NS DA ILQ KMM PAT B Me KVETIG DAYLGVTGAPDVVPDHAERACNFAVDIIEMIK VETIG DAYLGVTGAPEVVPDHADRAVNFALDIIEMIK KVETIG DAYLGVTGAPEVVPDHAERAANFAVDVISWOOI KVETIG DAFLGVVGAPDRIPDHAERAANFAIDVISWOOI KVETIG DAFLGVVGAPDRIPDHAERAANFAIDVISWOOI KVETIG DAFLGVVGAPDRIPDHAERAANFAIDVISWOOI KVETIG DAFLGVVGAPDRIPDHAERAANFAIDUIDMIK KVETIG DAFLGVVGAPDRIPDHAERAANFAIDUIDMIK KVETIG DAFLGVVGAPDRIPDHAERAANFAIDUIDMIK KVETIG DAFLGVVGAPDRIPDHAERAANFAIDUIDMIK KVETIG DAFLGVVGAPDRIPDHAERAAFAIDUIDMIK	- VL EQ LA SIGNATION E LA SIGVITO FED LA NETPLO - VL EQ LA SIGNATIONA E VESVITVE FED LA NETPLO SSVLEQ LA SIGNATIONA E VESVITVE FED LA NETVLIS SSVLEQ LA SIGNATIONA E VESVITVE FED LA NETVLIS PY FKT I TGES IN LA IGLISSOPYTAGVLGDLIPHWCLVC FKTATGES IN LA SIGNATIONA E VESVITVE FED LA NETVLISS FKT ATGES IN LA SIGNATIONA E VESVITVE FED LA SIGNATIONA FKTATGES IN LA SIGNATIONA E VESVITVE FED LA SIGNATIONA FKSATGES IN LA SIGNATIONA E VESVITAGVLG SIGNATIONALING FKSATGES IN LA SIGNATIONA E VESVITAGVLG SIGNATIONALING FKSATGES IN LA SIGNATIONA E VESVITAGVLG SIGNATIONALING FKSATGES IN LA SIGNATIONALING SIGNATIONALING FKSATGES IN LA SIGNATIONALING SIGNATIONALING FKSATGES IN LA SIGNATIONALING SIGNATIONALING FKSATGES IN LA SIGNATIONALING SIGNATIONALING FKSATGES IN LA SIGNATIONALING FKSATGES IN FKSATGES IN FKSATGES IN FKSATGES IN FKSATGES IN FKSATGES I	348 425 493 448 568 569 5456 492 549 528 596 5551
new BghGC 2015117-549 enw BghGC 2015317-509 AmRhGC 0956517-585 AmRhGC 0932/1-748 AmRhGC 03932/1-748 AmRhGC 13844/1-634 BeRhGC1-640 new GptRhGC 618394/1-515 new BghGC 53922/1-550 new BghGC 53922/1-550 AmRhGC 09565/1-58 AmRhGC 03932/1-748 AmRhGC 13844/1-634	314 V NATL EES MAS KAK WEAVAS E IES QMA 274 V NNS V EA QA NAK VEA IT A I A E EL E QOMT 391 V NS TV E QAQ NAK VEA IT A I A E EL E QOMT 391 V NS TV E QAQ NAK VEA IT A I A E EL E QOMT 374 V NS TV E DAQ NAK VEA IT A I A E EL E QOMT 375 V NS TV EHAQ NQ K VEA IT A I A E EL E QUMT 376 V NS TV EHAQ NQ K VEA IT A I A E EL E TQ VN 466 RT ST K DMMATL NK LWLE Y DA I A K RWG V 477 RT ST K DMMATL NK LWLE Y DA I A K RWG V 384 O TTT K EMLATL NA LWK EY DE I A A RWNM 390 K NS TK EHLA TL NK LWI E Y DU I C K RWG V 398 K S TK DMMATL NK LWI E Y DU I C K RWG V 399 RT ST K DMMATL NK LWI E Y DA I A K KWG I 426 RT ST K DMMATL NK LWI E Y DA I A K KWG I 449 RT ST K DMMK TL NM LWLE Y DA I A K KWG I 449 RT ST K DMMK TL NM LWLE Y DA I A K KWG I	ADALLEBLEN PAG NS DA ILQ KMM PAD NS DA ILQ KMM PAD NS DA ILQ KMM PAD VETIGDAYLG VTG APDVV PDHAERACNFAVDIIEMIK VETIGDAYLG VTG APEVV PDHAERACNFAVDIIEMIK VETIGDAYLG VTG APEVV PDHAERAAN FADDIIEMIK VETIGDAYLG VTG APERV PDHAERAAN FADDIIEMIK VETIGDAFLG VGAPERV PDHAERAAN FADDIIMIK VETIGDAFLG VGAPERV PDHAERAAN FADDIIMIK VETIGDAFLG VGAPERV PDHAERAAN FAIDIIMIK VETIGDAFLG VGAPEN VDHAERAAN FAIDIIMIK	- V LEQ LA MARA BARA MORE BASE OV FOR THE VALUE - V LEQ LA SGAT TE A DE YES VITVE FED LA NET PLEQ SSVLED IN SGATE A DE YES VITVE FED LITNET VISS SVLED IN SGATE A DE YES VITVE FED LITNET VISS - V LEQ IN SGATE A DE YES VISS VITVE A DE YES VISS - V LEQ IN SGATE A DE YES VITVE FED LITNET VISS - V LEQ IN SGATE A DE YES VITVE FED LITNET VISS - V LEQ IN SGATE A DE YES VITVE FED LITNET VISS - V LEQ IN SGATE A DE YES VISS VISS VISS VISS VISS VISS VISS VI	348 425 493 448 568 569 456 492 491 528 528 551
new BghGC 78151/1-549 AmRhGC 7932/1-748 AmRhGC 03932/1-748 AmRhGC 03932/1-748 AmRhGC 03932/1-748 AmRhGC 03844/1-634 BeRhGC1-625 CaRhGC1-640 new BghGC 055217-550 new BghGC 047331-509 AmRhGC 03932/1-748 AmRhGC 13844/1-634	314 Y NATL E S MAS KAK MEA VAS E IE S QMA 274 VN SY VE GA QIN TY SQMETLTS SL DE QMA 275 VN ST VE GA QIN TY SQMETLTS SL DE QMA 391 YN ST VE GA QN DK VE A ITA IA E E LE QOMT 391 YN ST VE QA QN DK VE A ITA IA E E LE QOMT 391 YN ST VE QA QN DK VE A ITA IA E E LE QOMT 374 YN ST VE QA QN DK VE A ITA IA E E LE QOMT 374 YN ST VE QA QN DK VE A ITA IA E E LE QOMT 374 YN ST VE QA QN DK VE A ITA IA E E LE QOMT 374 YN ST VE QA QN DK VE A ITA IA E E LE QOMT 374 YN ST VE QA QN DK VE A ITA IA E E LE QOMT 374 YN ST VE DA QN K VE A ITA IA E E LE QOMT 374 YN ST VE HA QN K VE A ITA IA E E LE TQ YN 466 RT ST K DMMATL NK LWLE Y DA IA K RWG Y 390 KN ST KE MLATL NK LWLE Y DA IA K RWG Y 390 KN ST K DMLATL NK LWLE Y DA IA K KWG I 390 KN ST K DMMK TL NM LWLE Y DA IA K KWG I 426 RT ST K DMMK TL NM LWLE Y DA IA K KWG I 427 RT T 428 RT ST K DMMK TL NM LWLE Y DA IA K KWG I 429 RT ST K DMMK TL NM LWLE Y DA IA K KWG I 429 RT ST K DMMK TL NM LWLE Y DA IA K KWG I 420 TY N TA S RWE ST SK A GH H IS ST Y QM 457 DT YN TA S RWE ST SK A GH H IS ST Y L 450 DT W TA S RWE ST SK A GH H IS ST Y K L 451 DT W TA S RWE ST SK A GH H IS ST Y Y K L 452 DT Y T A S R	AD IL LE BLIM P VS NS DA ILQ KMM P AD NS DA ILQ KMM P AT NS DA	PV LEQ LAW ABLA NOLE AS A VERY FED IA NETPLO - VLEQ LESGATE AQEYES VITY FED IA NETPLO - VLEQ INS GATE AQEYES VITY FED IA NETPLO SS VLEQ INS GATE AQEYES VITY FED IA NETPLO PV B FKT ITGES INI IGLNS GPVT AGVLGOLNPHWCLVC FKT ATGES INI IGLNS GPVT AGVLGOLNPHWCLVC FKS ATGES INI VGLHT GPVT AGVLGOLNPHWCLVC FKS ATGES INI FKS	348 425 493 448 5569 549 549 549 556 492 448 556 556 556 556 556 556 556 557 556 557 556 556

Abb. 50 Sequenz-Vergleich aller Rhodopsin-Guanylylzyklasen (RhGCs)

Der Vergleich wurde mithilfe von ClustalOmega¹⁸⁸ erstellt, die Farbgebung entspricht einer Sequenz-Konservation von 30 %. Die Sekundärstrukturelemente (Helices in rot, β-strands in grün) sind unterhalb des Vergleichs dargestellt und beruhen auf JPred4²⁰³ Vorhersagen für BeRhGC (1-442 AS). Die Sekundärstrukturen der Zyklase Domäne (443-626 AS) basieren auf der CaAC Struktur. Die jeweiligen Domänen/Segmentbeginne; Rhodopsin (Rh) Domäne, Coiled-Coil (CC), Zyklase-Transducer-Element (CTE) und Guanylylzyklase (GC) sind angezeigt. Konservierte Reste der Rhodopsin Domäne bzw. der Zyklase Domäne sind dargestellt. Dazu zählen in der Rhodopsin Domäne: aromatische Aminosäuren, die den Retinal Chromophor umgeben (RET), das Retinal-bindende Lys384 (RSB) in Helix 7, die vermeintlichen Gegenionen Glu254 und Asp380 (CI), Cys259 und Asp283 (D/C Paar), die für die Photozyklus-Kinetik in Channelrhdopsinen wichtig sind. In der Guanylylzyklase Domäne umfassen die konservierte Reste: zwei Metallbindende Aspartate (Me), die Substratspezifitätsdeterminierenden Reste (B) Cys und Glu, das γ -Phosphat-bindenden (Py) Arg, das Ribosebindende (R) Asparagin, sowie das Übergangszustands-stabilisierende (Tr) Arg. Der Vergleich umfasst folgende Sequenzen: die Rhodopsin-Guanylylzyklasen (RhGC) der Blastocladiomycota Catenaria anguillulae (Ca) (gb: MF939579), Blastocladiella emersonii (Be) (gb: AIC07007.1) und Allomyces macrogynus (Am). Die Sequenzen der AmRhGCs sind über die Zusatzinformation bei Avelar et al. zugänglich¹. Die Sequenzen der verkürzten RhGCs aus Rhizoclosmatium globosum und Globomyces pollinis -pini (Rg) (Gp) (Abteilung "jgi" *Chvtridiomvcota*) Datenbank sind über die zugänglich: GpRhGC_618394(gm1.2182_g),RgRhGC_559232(CE559232_26255), RgRhGC 781511(gm1.2695 g),RgRhGC 847233(estExt Genemark1.C 80214).

5.8 Kristallographische Tabelle der Be/CaGC Strukturmodelle

Tabelle 20 Kristanographische Ta	Delle voli DeGC 1.2 A
Internal numbering	XRD2 CR28 table1_69
Resolution range (Å)	24.05 - 1.179 (1.222 - 1.179)
Space group	P 21 21 2
Unit cell (Å, °)	65.47 126.4 42.839 90 90 90
Total reflections	759494 (68146)
Unique reflections	117395 (11461)
Multiplicity	6.5 (5.9)
Completeness (%)	1.00 (0.98)
Mean I/sigma(I)	16.32 (1.76)
Wilson B-factor	10.05
R-merge	0.0707 (0.9063)
R-meas	0.07696 (0.9938)
CC1/2	1 (0.702)
CC*	1 (0.908)
Reflections used in refinement	117378 (11458)
Reflections used for R-free	2100 (205)
R-work	0.1562 (0.2363)
R-free	0.1892 (0.2614)
CC(work)	0.962 (0.889)
CC(free)	0.943 (0.900)
Number of non-hydrogen atoms	3453
macromolecules	2969
ligands	20
Protein residues	374
RMS(bonds, Å)	0.006
RMS(angles, °)	0.95
Ramachandran favored (%)	99
Ramachandran allowed (%)	1.3
Ramachandran outliers (%)	0
Rotamer outliers (%)	0
Clashscore	3.03
Average B-factor	15.85
macromolecules	14.25
ligands	20.12
solvent	25.9

Tabelle 20 Kristallographische Tabelle von BeGC 1.2 Å

Tabelle 21 Kilstanographiselle Tab	
Internal numbering	XRD2 CL109A table1_65
Resolution range (Å)	36.63 - 1.448 (1.5 - 1.448)
Space group	P 21 21 2
Unit cell (Å, °)	65.81 88.18 34.49 90 90 90
Total reflections	234731 (22774)
Unique reflections	36478 (3571)
Multiplicity	6.4 (6.4)
Completeness (%)	1.00 (0.99)
Mean I/sigma(I)	15.54 (1.98)
Wilson B-factor	16.14
R-merge	0.06223 (0.9573)
R-meas	0.06783 (1.042)
CC1/2	1 (0.853)
CC*	1 (0.96)
Reflections used in refinement	36438 (3568)
Reflections used for R-free	1822 (178)
R-work	0.1730 (0.3142)
R-free	0.2104 (0.3439)
CC(work)	0.964 (0.946)
CC(free)	0.945 (0.933)
Number of non-hydrogen atoms	1573
macromolecules	1382
Protein residues	173
RMS(bonds, Å)	0.011
RMS(angles, °)	1.05
Ramachandran favored (%)	99
Ramachandran allowed (%)	1.2
Ramachandran outliers (%)	0
Rotamer outliers (%)	0
Clashscore	1.46
Average B-factor	27.7
macromolecules	26.35
solvent	37.51

Tabelle 21 Kristallographische Tabelle von BeGC 1.5 Å

Tabelle 22 Kilstanographische Tab	
Internal numbering	CaGC XRD5 CS97A table1_27
Resolution range (Å)	41.1 - 1.198 (1.241 - 1.198)
Space group	1222
Unit cell (Å, °)	65.64 82.21 85.16 90 90 90
Unique reflections	72329 (7064)
Completeness (%)	1
Wilson B-factor	12.04
Reflections used in refinement	72322 (7060)
Reflections used for R-free	3616 (353)
R-work	0.1550 (0.2184)
R-free	0.1724 (0.2399)
Number of non-hydrogen atoms	1826
macromolecules	1542
ligands	1
Protein residues	191
RMS (bonds, Å)	0.005
RMS(angles, °)	0.82
Ramachandran favored (%)	98
Ramachandran allowed (%)	1.5
Ramachandran outliers (%)	0
Rotamer outliers (%)	1.2
Clashscore	1.64
Average B-factor	18.88
macromolecules	16.72
Ligands	8.56
solvent	30.69

Tabelle 22 Kristallographische Tabelle von CaGC 1.2 Å

5.9 Einblicke in tmAC und die modellierten Be/CaGC Bindetaschen

Abb. 51 Aktives Zentrum von tmAC und modellierte Bindetaschen von Ca/BeGC

Zur Unterscheidung der katalytischen Einheiten sind diese jeweils unterschiedlich koloriert: blau-grün bzw. hellgrün-rot. (a) Bindetasche des antiparallelen tmAC Dimers (PDB: 1CJK) mit dem ATP Analogon ATP α S. Modellierte Bindetasche eines antiparallel orientierten BeGCs (b), CaGCs (c) mit ATP α S, beruhend auf der kettenweisen Überlagerung von Be/CaGC (1.2 Å) mit tmAC (PDB: 1CJK). Be/CaGC = Guanylylzyklase aus *Blastocladiella emersonii/Catenaria anguillulae*, tmAC = transmembranständige Adenylylzyklase, ATP α S = Adenosin-5'-(α -thio)-triphosphat

PDB ID	50YH
Data collection	
Space group	/41
Cell dimensions	
a, b, c (Å)	193.28, 193.28, 225.50
α, β, γ (°)	90, 90, 90
Resolution (Å)	45.9–2.249 (2.33–2.249) ^a
Unique reflections	194,816 (19,386)
R _{merge}	0.1151 (1.056)
CC _{1/2}	0.999 (0.703)
Ι/σΙ	15.35 (1.92)
Completeness (%)	100 (100)
Redundancy	7.8 (7.9)
Wilson B-factor	36.01
Refinement	
Resolution (Å)	2.25
No. of reflections	194,681 (19,371)
$R_{\rm work}/R_{\rm free}(\%)$	18.2/22.4
No. of atoms	24,979
Protein	226,62
Ligand/ion	602
Water	1715
B-factors	40.34
Protein	39.61
Ligand/ion	56.47
Water	44.28
R.m.s. deviations	
Bond lengths (Å)	0.009
Bond angles (°)	0.9
Ramachandran Plot	
Ramachandran favored (%)	98
Ramachandran allowed (%)	1.7
Ramachandran outliers (%)	0

Tabelle 23 Kristallographische Tabelle von CaAC 2.25 Å

5.10 Die Signalübertragung bei bPAC

Abb. 52 Intramolekulare Signalübertragung bei bPAC

(a) Schematisches Modell des bPAC Aktivierungsmechanismus; es wird angenommen, dass eine Licht-induzierte Bewegung der β 4/5 Schleifen ("tongue") zu einer Auseinanderbewegung der AC Untereinheiten führt, die unter anderem Platz für die Nukleotid-Bindung schafft. (b) - (c) Nahaufnahme der β 4/5 Schleife. Die stärkeren Farben, stellen bPAC nach Belichtung dar, während die schwachen Farben bPAC im dunkel-adaptierten Zustand zeigen. Die Bewegung von His266 (β 5, 6.5 - 3.9 Å) führt zu einer Neuausrichtung von Thr267 in Richtung der Nukleotid-Bindestelle. Modifizierte Abbildung basierend auf Lindner et al ¹⁷⁵.

5.11 CTE Interaktionen

Abb. 53 Analyse der Domänen-Interaktion zwischen CTE Motiv und Zyklase Domäne

(a) Sequenz-Vergleich von Be/CaRhGC mit verschiedenen Zyklasen im Bereich des CTEs, der $\alpha 2 - \beta 2$ Schleife und der $\beta 4 - \beta 5$ Schleife. Der rote Stern markiert das konservierte Prolin des CTEs. Die Nukleotid-bindenden Reste sind mit einem roten Plus gekennzeichnet. Analyse der Coiled-Coil/Zyklasen Interaktion der Licht-adaptierten bPAC (PDB: 5MBE) (b), der Licht-adaptierten OaPAC (PDB: 4YUS) (c), der mykobakteriellen AC (PDB: 5O5K) (d) und der modellierten CaGC (e) (Modellierungsgrundlage: OaPAC (4YUS)). Eine Überlagerung des CaGC Modells mit der CaAC Struktur (PDB: 5OYH) resultiert in einem RMSD = 3.2 Å. Die an der Interaktion beteiligten Aminosäuren sind hervorgehoben. AC = Adenylat Zyklase, PAC = Photoaktivierte Adenylate Zyklase, GC = Guanylylzyklase, Oa = Oscillatoria acuminate, b = Beggiatoa, Ca = Catenaria anguillulae

Tubble 2 CTD Internationen Susperend un 100, 55					
	СТЕ	Katalytische Einheit			
Protein		β4/5* Region	β2	β4/5	α2
		(Partnermonomer)		Region	
bPAC	Y126	N257			
(PDB: 5MBE)	K125	S261, M264			
	Y126/M127	K263			
	R130		E194		
	R130			E255	

Tabelle 24 CTE Interaktionen basi	ierend auf Abb. 53
-----------------------------------	--------------------

OaPAC (PDE	S: K124	R263			
4YUS)	Y125	N256, K262			
	Q127		T195		
	Q127			Y265	

Mykobak-	N225	S359, R361			
terielle AC		R360			D284,
(PDB: 505K)					D288
		R361	E293		
	Die Interface des Partr	nermonomers birgt eine	en Sulfatre	est an der G	renzfläche,
	dadurch ergeben sich	an dieser Stelle elektros	statische V	Nechselwirl	kungen mit
	R360/R361 (β4/5) und	E293(β2)*.			

CaAC Modell	K427	P563		
(basierend auf	M429	N562		
OaPAC)	E431(E435)			K489
		D560	K495	

Der Stern (*) steht für das Partnermonomer. Die Tabelle ist von links nach rechts zu lesen, z.B. Y126 des CTE interagiert mit N257 (β 4/5*) oder R130 des CTE interagiert mit E194 (β 2). Die Interaktionen finden über die Seitenkette und/oder über das Proteinrückgrat statt, elektrostatische Wechselwirkungen sind in blau/rot hervorgehoben.

6 Referenzen

- 1. Avelar, G. M. *et al.* A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. *Curr. Biol.* **24**, 1234–40 (2014).
- Lucas, K. A. *et al.* Guanylyl cyclases and signaling by cyclic GMP. *Pharmacol. Rev.* 52, 375–414 (2000).
- 3. Gileadi, O. Structures of soluble guanylate cyclase: implications for regulatory mechanisms and drug development. *Biochem. Soc. Trans.* **42**, 108–13 (2014).
- 4. Mujoo, K. *et al.* Role of soluble guanylyl cyclase–cyclic GMP signaling in tumor cell proliferation. *Nitric Oxide* **22**, 43–50 (2010).
- Pilz, R. B. & Casteel, D. E. Regulation of Gene Expression by Cyclic GMP. *Circulation Research* 93, 1034–1046 (2003).
- 6. Ruiz-Stewart, I. *et al.* Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism. *Proc. Natl. Acad. Sci.* **101**, 37–42 (2004).
- Murad, F. Nitric Oxide and Cyclic GMP in Cell Signaling and Drug Development. N. Engl. J. Med. 355, 2003–2011 (2006).
- Beavo, J. A. & Brunton, L. L. Cyclic nucleotide research still expanding after half a century. *Nat. Rev. Mol. Cell Biol.* 3, 710–718 (2002).
- 9. Cheng, X., Ji, Z., Tsalkova, T. & Mei, F. Epac and PKA: a tale of two intracellular cAMP receptors. *Acta Biochim. Biophys. Sin. (Shanghai).* **40**, 651–62 (2008).
- Rehmann, H., Wittinghofer, A. & Bos, J. L. Capturing cyclic nucleotides in action: snapshots from crystallographic studies. *Nat. Rev. Mol. Cell Biol.* 8, 63–73 (2007).
- 11. Gancedo, J. M. Biological roles of cAMP: variations on a theme in the different kingdoms of life. *Biol. Rev.* 88, 645–668 (2013).
- 12. Fimia, G. M. & Sassone-Corsi, P. Cyclic AMP signalling. J. Cell Sci. 114, (2001).
- Pathak, G. P., Vrana, J. D. & Tucker, C. L. Optogenetic control of cell function using engineered photoreceptors. *Biol. cell* 105, 59–72 (2013).

- van der Horst, M. A. & Hellingwerf, K. J. Photoreceptor Proteins, 'Star Actors of Modern Times': A Review of the Functional Dynamics in the Structure of Representative Members of Six Different Photoreceptor Families. *Acc. Chem. Res.* 37, 13–20 (2004).
- Möglich, A., Yang, X., Ayers, R. A. & Moffat, K. Structure and Function of Plant Photoreceptors. *Annu. Rev. Plant Biol.* 61, 21–47 (2010).
- Kottke, T., Xie, A., Larsen, D. S. & Hoff, W. D. Photoreceptors Take Charge: Emerging Principles for Light Sensing. *Annu. Rev. Biophys.* 47, annurev-biophys-070317-033047 (2018).
- 17. Ernst, O. P. *et al.* Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. *Chem. Rev.* **114**, 126–163 (2014).
- Spudich, J. L., Yang, C.-S., Jung, K.-H. & Spudich, E. N. Retinylidene Proteins: Structures and Functions from Archaea to Humans. *Annu. Rev. Cell Dev. Biol.* 16, 365– 392 (2000).
- Strasburger, E. Die Wirkung der Wärme und des Lichtes auf Schwärmsporen. *Jenaische Z. Nat.* 12, 551–625 (1878).
- 20. Saranak, J. & Foster, K. W. Rhodopsin guides fungal phototaxis. *Nature* **387**, 465–466 (1997).
- 21. Vale, M. R., Gomes, S. L. & Maia, J. C. Independent cAMP and cGMP phosphodiesterases in Blastocladiella emersonii. *FEBS Lett.* **56**, 332–6 (1975).
- Silverman, P. M. & Epstein, P. M. Cyclic nucleotide metabolism coupled to cytodifferentiation of Blastocladiella emersonii. *Proc. Natl. Acad. Sci. U. S. A.* 72, 442–6 (1975).
- Silverman, P. M. Regulation of guanylate cyclase activity during cytodifferentiation of Blastocladiella emersonii. *Biochem. Biophys. Res. Commun.* 70, 381–8 (1976).
- 24. Avelar, G. M. *et al.* A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii. *Eukaryot. Cell* **14**, 958–63 (2015).
- Plachetzki, D. C., Fong, C. R. & Oakley, T. H. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. *Proceedings. Biol. Sci.* 277, 1963–9 (2010).

- 26. Gao, S. *et al.* Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. *Nat. Commun.* **6**, 8046 (2015).
- Trieu, M. M. *et al.* Expression, Purification, and Spectral Tuning of RhoGC, a Retinylidene/Guanylyl Cyclase Fusion Protein and Optogenetics Tool from the Aquatic Fungus Blastocladiella emersonii. *J. Biol. Chem.* jbc.M117.789636 (2017). doi:10.1074/jbc.M117.789636
- Takahashi, T., Tomioka, H., Kamo, N. & Kobatake, Y. A photosystem other than PS370 also mediates the negative phototaxis of Halobacterium halobium. *FEMS Microbiol. Lett.* 28, 161–164 (1985).
- Spudich, E. N., Sundberg, S. A., Manor, D. & Spudich, J. L. Properties of a second sensory receptor protein inHalobacterium halobium phototaxis. *Proteins Struct. Funct. Genet.* 1, 239–246 (1986).
- Tomioka, H., Takahashi, T., Kamo, N. & Kobatake, Y. Flash spectrophotometric identification of a fourth rhodopsin-like pigment in Halobacterium halobium. *Biochem. Biophys. Res. Commun.* 139, 389–95 (1986).
- 31. Bogomolni, R. A. & Spudich, J. L. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. *Proc. Natl. Acad. Sci. U. S. A.* **79**, 6250–4 (1982).
- Spudich, E. N. & Spudich, J. L. Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. *Proc. Natl. Acad. Sci. U. S. A.* **79**, 4308–12 (1982).
- 33. Schmidt, T. M., Chen, S.-K. & Hattar, S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. *Trends Neurosci.* **34**, 572–580 (2011).
- Shichida, Y. & Matsuyama, T. Evolution of opsins and phototransduction. *Philos. Trans. R. Soc. B Biol. Sci.* 364, 2881–2895 (2009).
- 35. Helmreich, E. J. M. & Hofmann, K.-P. Structure and function of proteins in G-proteincoupled signal transfer. *Biochim. Biophys. Acta - Rev. Biomembr.* **1286**, 285–322 (1996).
- Sakmar, T. P. Rhodopsin: A Prototypical G Protein-Coupled Receptor. Prog. Nucleic Acid Res. Mol. Biol. 59, 1–34 (1997).
- Herbst, J., Heyne, K. & Diller, R. Femtosecond Infrared Spectroscopy of Bacteriorhodopsin Chromophore Isomerization. *Science (80-.).* 297, 822–825 (2002).

- Mizukami, T. *et al.* Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked eight-membered ring retinal. *Proc. Natl. Acad. Sci. U. S. A.* 90, 4072–6 (1993).
- 39. Palczewski, K. Chemistry and Biology of Vision. J. Biol. Chem. 287, 1612–1619 (2012).
- Kiser, P. D., Golczak, M., Maeda, A. & Palczewski, K. Key enzymes of the retinoid (visual) cycle in vertebrate retina. *Biochim. Biophys. Acta - Mol. Cell Biol. Lipids* 1821, 137–151 (2012).
- 41. Heberle, J., Fitter, J., Sass, H. J. & Büldt, G. Bacteriorhodopsin: the functional details of a molecular machine are being resolved. *Biophys. Chem.* **85**, 229–248 (2000).
- 42. Neutze, R. *et al.* Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. *Biochim. Biophys. Acta Biomembr.* **1565,** 144–167 (2002).
- Govorunova, E. G., Sineshchekov, O. A., Li, H. & Spudich, J. L. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. *Annu. Rev. Biochem.* 86, 845– 872 (2017).
- Haupts, U., Tittor, J. & Oesterhelt, D. CLOSING IN ON BACTERIORHODOPSIN: Progress in Understanding the Molecule. *Annu. Rev. Biophys. Biomol. Struct.* 28, 367– 399 (1999).
- 45. Lanyi, J. K. Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665–688 (2004).
- Mathies, R. A., Lin, S. W., Ames, J. B. & Pollard, W. T. From Femtoseconds to Biology: Mechanism of Bacteriorhodopsin's Light-Driven Proton Pump. *Annu. Rev. Biophys. Biophys. Chem.* 20, 491–518 (1991).
- 47. Herzfeld, J. & Lansing, J. C. Magnetic Resonance Studies of the Bacteriorhodopsin Pump Cycle. *Annu. Rev. Biophys. Biomol. Struct.* **31**, 73–95 (2002).
- 48. Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. *Nat. New Biol.* **233**, 149–52 (1971).
- Braiman, M. S. *et al.* Vibrational Spectroscopy of Bacteriorhodopsin Mutants: Light-Driven Proton Transport Involves Protonation Changes of Aspartic Acid Residues 85, 96, and 212f. *Biochemistry* 27, 8516–8520 (1988).

- Drachev, L. A., Kaulen, A. D. & Skulachev, V. P. Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin. *FEBS Lett.* 178, 331– 335 (1984).
- Grzesiek, S. & Dencher, N. A. Time-course and stoichiometry of light-induced proton release and uptake during the photocycle of bacteriorhodopsin. *FEBS Lett.* 208, 337–342 (1986).
- 52. Mukohata, Y. & Kaji, Y. Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N,N'-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). *Arch. Biochem. Biophys.* 206, 72–6 (1981).
- Schobert, B. & Lanyi, J. K. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257, 10306–13 (1982).
- Inoue, K., Koua, F. H. M., Kato, Y., Abe-Yoshizumi, R. & Kandori, H. Spectroscopic Study of a Light-Driven Chloride Ion Pump from Marine Bacteria. J. Phys. Chem. B 118, 11190–11199 (2014).
- Sasaki, J. *et al.* Conversion of bacteriorhodopsin into a chloride ion pump. *Science* 269, 73–5 (1995).
- 56. Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. *Biophys. J.* **15**, 955–62 (1975).
- Balashov, S. P. & Ebrey, T. G. Trapping and spectroscopic identification of the photointermediates of bacteriorhodopsin at low temperatures. *Photochem. Photobiol.* 73, 453–62 (2001).
- 58. Subramaniam, S. *et al.* Protein conformational changes in the bacteriorhodopsin photocycle 1 1Edited by B. Honig. *J. Mol. Biol.* **287**, 145–161 (1999).
- Shibata, M., Yamashita, H., Uchihashi, T., Kandori, H. & Ando, T. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. *Nat. Nanotechnol.* 5, 208–212 (2010).
- Rink, T., Pfeiffer, M., Oesterhelt, D., Gerwert, K. & Steinhoff, H.-J. Unraveling Photoexcited Conformational Changes of Bacteriorhodopsin by Time Resolved Electron Paramagnetic Resonance Spectroscopy. *Biophys. J.* 78, 1519–1530 (2000).

- Oka, T. *et al.* Conformational Change of Helix G in the Bacteriorhodopsin Photocycle: Investigation with Heavy Atom Labeling and X-Ray Diffraction. *Biophys. J.* 76, 1018– 1023 (1999).
- 62. Kamikubo, H. *et al.* Structure of the N intermediate of bacteriorhodopsin revealed by x-ray diffraction. *Proc. Natl. Acad. Sci. U. S. A.* **93**, 1386–90 (1996).
- 63. Sass, H. J. *et al.* The tertiary structural changes in bacteriorhodopsin occur between M states: X-ray diffraction and Fourier transform infrared spectroscopy. *EMBO J.* **16**, 1484–1491 (1997).
- 64. Váró, G. *et al.* Photocycle of halorhodopsin from Halobacterium salinarium. *Biophys. J.*68, 2062–72 (1995).
- Govorunova, E. G., Jung, K.-H., Sineshchekov, O. A. & Spudich, J. L. Chlamydomonas Sensory Rhodopsins A and B: Cellular Content and Role in Photophobic Responses. *Biophys. J.* 86, 2342–2349 (2004).
- 66. Nagel, G. *et al.* Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. *Proc. Natl. Acad. Sci.* **100**, 13940–13945 (2003).
- 67. Nagel, G. *et al.* Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae. *Science (80-.).* **296,** 2395–2398 (2002).
- Sineshchekov, O. A., Jung, K.-H. & Spudich, J. L. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. *Proc. Natl. Acad. Sci.* 99, 8689–8694 (2002).
- 69. Deisseroth, K. & Hegemann, P. The form and function of channelrhodopsin. *Science* (80-.). **357**, eaan5544 (2017).
- Schneider, F., Grimm, C. & Hegemann, P. Biophysics of Channelrhodopsin. *Annu. Rev. Biophys.* 44, 167–186 (2015).
- Kato, H. E. *et al.* Crystal structure of the channelrhodopsin light-gated cation channel. *Nature* 482, 369–74 (2012).
- 72. Sineshchekov, O. A., Govorunova, E. G., Wang, J., Li, H. & Spudich, J. L. Intramolecular Proton Transfer in Channelrhodopsins. *Biophys. J.* **104**, 807–817 (2013).
- 73. Kuhne, J. *et al.* Early Formation of the Ion-Conducting Pore in Channelrhodopsin-2. *Angew. Chemie Int. Ed.* **54**, 4953–4957 (2015).

- Lórenz-Fonfría, V. A. & Heberle, J. Channelrhodopsin unchained: Structure and mechanism of a light-gated cation channel. *Biochim. Biophys. Acta - Bioenerg.* 1837, 626–642 (2014).
- 75. Ritter, E., Piwowarski, P., Hegemann, P. & Bartl, F. J. Light-dark adaptation of channelrhodopsin C128T mutant. *J. Biol. Chem.* **288**, 10451–8 (2013).
- Neumann-Verhoefen, M.-K. *et al.* Ultrafast Infrared Spectroscopy on Channelrhodopsin-2 Reveals Efficient Energy Transfer from the Retinal Chromophore to the Protein. *J. Am. Chem. Soc.* 135, 6968–6976 (2013).
- 77. Krause, N., Engelhard, C., Heberle, J., Schlesinger, R. & Bittl, R. Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy. *FEBS Lett.* 587, 3309–3313 (2013).
- Sattig, T., Rickert, C., Bamberg, E., Steinhoff, H.-J. & Bamann, C. Light-Induced Movement of the Transmembrane Helix B in Channelrhodopsin-2. *Angew. Chemie Int. Ed.* 52, 9705–9708 (2013).
- 79. Nack, M. *et al.* The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156. *Photochem. Photobiol. Sci.* **9**, 194 (2010).
- Bamann, C., Gueta, R., Kleinlogel, S., Nagel, G. & Bamberg, E. Structural Guidance of the Photocycle of Channelrhodopsin-2 by an Interhelical Hydrogen Bond. *Biochemistry* 49, 267–278 (2010).
- Berndt, A., Prigge, M., Gradmann, D. & Hegemann, P. Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle. *Biophys. J.* 98, 753–61 (2010).
- 82. Nikolic, K. *et al.* Photocycles of Channelrhodopsin-2. *Photochem. Photobiol.* **85,** 400–411 (2009).
- Hegemann, P., Ehlenbeck, S. & Gradmann, D. Multiple photocycles of channelrhodopsin. *Biophys. J.* 89, 3911–8 (2005).
- 84. Bruun, S. *et al.* Light–Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all- *trans* and 13- *cis* Retinal Isomers. *Biochemistry* **54**, 5389–5400 (2015).

- Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. *Science (80-.).* 349, (2015).
- Govorunova, E. G. *et al.* The Expanding Family of Natural Anion Channelrhodopsins Reveals Large Variations in Kinetics, Conductance, and Spectral Sensitivity. *Sci. Rep.* 7, 43358 (2017).
- Nagel, G. *et al.* Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses. *Curr. Biol.* 15, 2279– 2284 (2005).
- Li, X. *et al.* Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. *Proc. Natl. Acad. Sci.* 102, 17816–17821 (2005).
- Ishizuka, T., Kakuda, M., Araki, R. & Yawo, H. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. *Neurosci. Res.* 54, 85–94 (2006).
- Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecondtimescale, genetically targeted optical control of neural activity. *Nat. Neurosci.* 8, 1263– 1268 (2005).
- 91. Bi, A. *et al.* Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. *Neuron* **50**, 23–33 (2006).
- 92. Wietek, J. & Prigge, M. Enhancing Channelrhodopsins: An Overview. in *Methods in molecular biology (Clifton, N.J.)* **1408,** 141–165 (2016).
- Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. *Nat. Neurosci.* 18, 1213–1225 (2015).
- 94. Boyden, E. S. Optogenetics and the future of neuroscience. *Nat. Neurosci.* **18**, 1200–1201 (2015).
- Guru, A., Post, R. J., Ho, Y.-Y. & Warden, M. R. Making Sense of Optogenetics. *Int. J. Neuropsychopharmacol.* 18, pyv079 (2015).
- 96. Wietek, J. *et al.* Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior. *Sci. Rep.* **7**, 14957 (2017).

- 97. Klare, J. P. *et al.* The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. *FEBS Lett.* **564**, 219–224 (2004).
- 98. Hoff, W. D., Jung, K.-H. & Spudich, J. L. MOLECULAR MECHANISM OF PHOTOSIGNALING BY ARCHAEAL SENSORY RHODOPSINS. Annu. Rev. Biophys. Biomol. Struct. 26, 223–258 (1997).
- Spudich, J. L. The multitalented microbial sensory rhodopsins. *Trends Microbiol.* 14, 480–487 (2006).
- 100. Moukhametzianov, R. *et al.* Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. *Nature* **440**, 115–119 (2006).
- Sudo, Y. & Spudich, J. L. Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. *Proc. Natl. Acad. Sci. U. S. A.* 103, 16129–34 (2006).
- 102. Sudo, Y., Iwamoto, M., Shimono, K., Sumi, M. & Kamo, N. Photo-Induced Proton Transport of Pharaonis Phoborhodopsin (Sensory Rhodopsin II) Is Ceased by Association with the Transducer. *Biophys. J.* 80, 916–922 (2001).
- 103. Sasaki, J. & Spudich, J. L. Proton transport by sensory rhodopsins and its modulation by transducer-binding. *Biochim. Biophys. Acta* **1460**, 230–9 (2000).
- Bogomolni, R. A. *et al.* Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I. *Proc. Natl. Acad. Sci. U. S. A.* 91, 10188–92 (1994).
- Spudich, J. L. & Bogomolni, R. A. Mechanism of colour discrimination by a bacterial sensory rhodopsin. *Nature* **312**, 509–13 (1984).
- 106. Luck, M. *et al.* A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. *J. Biol. Chem.* **287**, 40083–90 (2012).
- 107. Kateriya, S. 'Vision' in Single-Celled Algae. News Physiol. Sci. 19, 133–137 (2004).
- Kianianmomeni, A. & Hallmann, A. Algal photoreceptors: in vivo functions and potential applications. *Planta* 239, 1–26 (2014).
- Kateriya, S., Nagel, G., Bamberg, E. & Hegemann, P. " Vision" in singlecelled algae. *News Physiol. Sci.* 19, 133–7 (2004).

- 110. Luck, M. & Hegemann, P. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1. *J. Plant Physiol.* **217**, 77–84 (2017).
- 111. Lamarche, L. B. *et al.* Purification and Characterization of RhoPDE, a Retinylidene/Phosphodiesterase Fusion Protein and Potential Optogenetic Tool from the Choanoflagellate *Salpingoeca rosetta*. *Biochemistry* **56**, 5812–5822 (2017).
- Yoshida, K., Tsunoda, S. P., Brown, L. S. & Kandori, H. A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity. *J. Biol. Chem.* 292, 7531–7541 (2017).
- Tian, Y., Gao, S., Yang, S. & Nagel, G. A novel rhodopsin phosphodiesterase from Salpingoeca rosetta shows light-enhanced substrate affinity. Biochem. J. BCJ20180010 (2018). doi:10.1042/BCJ20180010
- 114. Aravind, L. & Ponting, C. P. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. *FEMS Microbiol. Lett.* **176**, 111–116 (1999).
- Dunin-Horkawicz, S. & Lupas, A. N. Comprehensive Analysis of HAMP Domains: Implications for Transmembrane Signal Transduction. J. Mol. Biol. 397, 1156–1174 (2010).
- Kamenetsky, M. *et al.* Molecular Details of cAMP Generation in Mammalian Cells: A Tale of Two Systems. *J. Mol. Biol.* 362, 623–639 (2006).
- 117. Danchin, A. Phylogeny of adenylyl cyclases. 27, 109–162 (1993).
- Gallagher, D. T. *et al.* Structure of the Class IV Adenylyl Cyclase Reveals a Novel Fold. *J. Mol. Biol.* 362, 114–122 (2006).
- 119. Linder, J. U. & Schultz, J. E. The class III adenylyl cyclases: multi-purpose signalling modules. *Cell. Signal.* **15**, 1081–1089 (2003).
- Kleinboelting, S. *et al.* Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. *Proc. Natl. Acad. Sci.* 111, 3727–3732 (2014).
- 121. SUTHERLAND, E. W. & RALL, T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. *J. Biol. Chem.* **232**, 1077–91 (1958).

- 122. Hanoune, J. & Defer, N. R EGULATION AND R OLE OF A DENYLYL C YCLASE I SOFORMS. Annu. Rev. Pharmacol. Toxicol. 41, 145–174 (2001).
- Sunahara, R. K. & Taussig, R. Isoforms of Mammalian Adenylyl Cyclase: Multiplicities of Signaling. *Mol. Interv.* 2, 168–184 (2002).
- Tesmer, J. J., Sunahara, R. K., Gilman, A. G. & Sprang, S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. *Science* 278, 1907–16 (1997).
- 125. Kleinboelting, S. *et al.* Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. doi:10.1073/pnas.1322778111
- 126. Zippin, J. H. *et al.* CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. *J. Biol. Chem.* **288**, 33283–91 (2013).
- 127. Steegborn, C., Litvin, T. N., Levin, L. R., Buck, J. & Wu, H. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. *Nat. Struct. Mol. Biol.* **12**, 32–37 (2005).
- Litvin, T. N., Kamenetsky, M., Zarifyan, A., Buck, J. & Levin, L. R. Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. *J. Biol. Chem.* 278, 15922–6 (2003).
- 129. Chen, Y. *et al.* Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. *Science* **289**, 625–8 (2000).
- 130. Steegborn, C. Structure, mechanism, and regulation of soluble adenylyl cyclases similarities and differences to transmembrane adenylyl cyclases. *Biochim. Biophys. Acta Mol. Basis Dis.* 1842, 2535–2547 (2014).
- 131. Tews, I. *et al.* The Structure of a pH-Sensing Mycobacterial Adenylyl Cyclase Holoenzyme. *Science (80-.).* **308,** 1020–1023 (2005).
- 132. Vercellino, I. *et al.* Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E9821–E9828 (2017).
- Baker, D. A. & Kelly, J. M. Structure, function and evolution of microbial adenylyl and guanylyl cyclases. *Mol. Microbiol.* 52, 1229–1242 (2004).

- 134. Rauch, A., Leipelt, M., Russwurm, M. & Steegborn, C. Crystal structure of the guanylyl cyclase Cya2. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 15720–5 (2008).
- Potter, L. R. Guanylyl cyclase structure, function and regulation. *Cell. Signal.* 23, 1921–6 (2011).
- Linder, J. U. & Schultz, J. E. Guanylyl cyclases in unicellular organisms. *Mol. Cell. Biochem.* 230, 149–158 (2002).
- 137. Garbers, D. L. The guanylyl cyclase receptor family. New Biol. 2, 499–504 (1990).
- Ma, X., Beuve, A. & Van Den Akker, F. Crystal structure of the signaling helix coiledcoil domain of the ??1 subunit of the soluble guanylyl cyclase. *BMC Struct. Biol.* 10, 2 (2010).
- 139. Yang, R. B. *et al.* Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. *J. Neurosci.* **19**, 5889–97 (1999).
- Liu, Y., Ruoho, A. E., Rao, V. D. & Hurley, J. H. Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. *Proc. Natl. Acad. Sci. U. S. A.* 94, 13414–9 (1997).
- 141. Kuhn, M. Function and Dysfunction of Mammalian Membrane Guanylyl Cyclase Receptors: Lessons from Genetic Mouse Models and Implications for Human Diseases. in *cGMP: Generators, Effectors and Therapeutic Implications* 47–69 (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-540-68964-5 4
- Martin, E., Berka, V., Tsai, A. & Murad, F. Soluble Guanylyl Cyclase: The Nitric Oxide Receptor. *Methods Enzymol.* 396, 478–492 (2005).
- 143. Montfort, W. R., Wales, J. A. & Weichsel, A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. *Antioxid. Redox Signal.* 26, 107–121 (2017).
- 144. Ignarro, L. J. Nitric oxide : biology and pathobiology. (Academic, 2010).
- 145. Campbell, M. G., Underbakke, E. S., Potter, C. S., Carragher, B. & Marletta, M. A. Single-particle EM reveals the higher-order domain architecture of soluble guanylate cyclase. *Proc. Natl. Acad. Sci. U. S. A.* 111, 2960–5 (2014).
- 146. Anantharaman, V., Balaji, S. & Aravind, L. The signaling helix: a common functional theme in diverse signaling proteins. *Biol. Direct* **1**, 25 (2006).

- 147. Ramamurthy, V. *et al.* Interactions within the Coiled-coil Domain of RetGC-1 Guanylyl Cyclase Are Optimized for Regulation Rather than for High Affinity. *J. Biol. Chem.* 276, 26218–26229 (2001).
- Lupas, A. N. & Gruber, M. The Structure of α-Helical Coiled Coils. in *Advances in protein chemistry* 70, 37–38 (2005).
- 149. Kelsell, R. E. *et al.* Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. *Hum. Mol. Genet.* **7**, 1179–84 (1998).
- Fassler, J. S. *et al.* Activated alleles of yeast SLN1 increase Mcm1-dependent reporter gene expression and diminish signaling through the Hog1 osmosensing pathway. *J. Biol. Chem.* 272, 13365–71 (1997).
- 151. Tao, W., Malone, C. L., Ault, A. D., Deschenes, R. J. & Fassler, J. S. A cytoplasmic coiled-coil domain is required for histidine kinase activity of the yeast osmosensor, SLN1. *Mol. Microbiol.* 43, 459–73 (2002).
- 152. Ziegler, M. *et al.* Characterization of a novel signal transducer element intrinsic to class IIIa/b adenylate cyclases and guanylate cyclases. *FEBS J.* **284**, 1204–1217 (2017).
- 153. Bassler, J., Schultz, J. E. & Lupas, A. N. Adenylate cyclases: Receivers, transducers, and generators of signals. *Cell. Signal.* (2018). doi:10.1016/j.cellsig.2018.03.002
- 154. Sinha, S. C. & Sprang, S. R. Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases. *Rev. Physiol. Biochem. Pharmacol.* **157**, 105–40 (2006).
- 155. Winger, J. A., Derbyshire, E. R., Lamers, M. H., Marletta, M. A. & Kuriyan, J. The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. *BMC Struct. Biol.* 8, 42 (2008).
- Allerston, C. K., von Delft, F., Gileadi, O., Foerster, J. & Schultz, G. Crystal Structures of the Catalytic Domain of Human Soluble Guanylate Cyclase. *PLoS One* 8, e57644 (2013).
- Shenoy, A. R. & Visweswariah, S. S. Mycobacterial adenylyl cyclases: Biochemical diversity and structural plasticity. *FEBS Lett.* 580, 3344–3352 (2006).
- 158. Linder, J. U. Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation. *Cell. Mol. Life Sci.* **63**, 1736–1751 (2006).

- 159. Hurley, J. H. Structure, mechanism, and regulation of mammalian adenylyl cyclase. *J. Biol. Chem.* **274**, 7599–602 (1999).
- Gerlt, J. A., Coderre, J. A. & Wolin, M. S. Mechanism of the adenylate cyclase reaction. Stereochemistry of the reaction catalyzed by the enzyme from Brevibacterium liquefaciens. J. Biol. Chem. 255, 331–4 (1980).
- Doublié, S. & Ellenberger, T. The mechanism of action of T7 DNA polymerase. *Curr. Opin. Struct. Biol.* 8, 704–12 (1998).
- 162. Tesmer, J. J. *et al.* Two-metal-Ion catalysis in adenylyl cyclase. *Science* **285**, 756–60 (1999).
- Linder, J. U. Substrate selection by class III adenylyl cyclases and guanylyl cyclases. *IUBMB Life* 57, 797–803 (2005).
- 164. Zhang, G., Liu, Y., Ruoho, A. E. & Hurley, J. H. Structure of the adenylyl cyclase catalytic core. *Nature* **386**, 247–53 (1997).
- 165. Kleinboelting, S., van den Heuvel, J. & Steegborn, C. Structural analysis of human soluble adenylyl cyclase and crystal structures of its nucleotide complexes-implications for cyclase catalysis and evolution. *FEBS J.* 281, 4151–64 (2014).
- 166. Gomelsky, M. & Klug, G. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. *Trends Biochem. Sci.* **27**, 497–500 (2002).
- Iseki, M. *et al.* A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. *Nature* 415, 1047–1051 (2002).
- 168. Ohki, M. *et al.* Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 6659–64 (2016).
- Stierl, M. *et al.* Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. *J. Biol. Chem.* 286, 1181–1188 (2011).
- Ryu, M.-H., Moskvin, O. V, Siltberg-Liberles, J. & Gomelsky, M. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. *J. Biol. Chem.* 285, 41501–8 (2010).

- 171. Tanwar, M. *et al.* Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool. *Sci. Rep.* 7, 12048 (2017).
- 172. Ntefidou, M., Iseki, M., Watanabe, M., Lebert, M. & Häder, D.-P. Photoactivated Adenylyl Cyclase Controls Phototaxis in the Flagellate Euglena gracilis. *Plant Physiol.* 133, (2003).
- Schröder-Lang, S. *et al.* Fast manipulation of cellular cAMP level by light in vivo. *Nat. Methods* 4, 39–42 (2007).
- 174. Weissenberger, S. *et al.* PACα- an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. *J. Neurochem.* **116**, 616–625 (2011).
- 175. Lindner, R. *et al.* Photoactivation Mechanism of a Bacterial Light-Regulated Adenylyl Cyclase. *J. Mol. Biol.* (2017). doi:10.1016/j.jmb.2017.03.020
- 176. Hartmann, A. *et al.* Optogenetic modulation of an adenylate cyclase in Toxoplasma gondii demonstrates a requirement of the parasite cAMP for host-cell invasion and stage differentiation. *J. Biol. Chem.* 288, 13705–17 (2013).
- 177. De Marco, R. J., Groneberg, A. H., Yeh, C.-M., Castillo Ramírez, L. a & Ryu, S. Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish. *Front. Neural Circuits* 7, 82 (2013).
- Gutierrez-Triana, J. A. *et al.* Manipulation of Interrenal Cell Function in Developing Zebrafish Using Genetically Targeted Ablation and an Optogenetic Tool. *Endocrinology* 156, 3394–3401 (2015).
- 179. Jansen, V. *et al.* Controlling fertilization and cAMP signaling in sperm by optogenetics. *Elife* **4**, (2015).
- Steuer Costa, W., Yu, S., Liewald, J. F. & Gottschalk, A. Fast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading. *Curr. Biol.* 27, 495– 507 (2017).
- 181. Ohki, M. *et al.* Molecular mechanism of photoactivation of a light-regulated adenylate cyclase. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 8562–8567 (2017).

- 182. Tanwar, M., Sharma, K., Moar, P. & Kateriya, S. Biochemical Characterization of the Engineered Soluble Photoactivated Guanylate Cyclases from Microbes Expands Optogenetic Tools. *Appl. Biochem. Biotechnol.* 1–15 (2018). doi:10.1007/s12010-018-2710-x
- Raffelberg, S. *et al.* A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium *Microcoleus chthonoplastes* PCC 7420. *Biochem. J.* 455, 359–365 (2013).
- 184. Ryu, M.-H. *et al.* Engineering adenylate cyclases regulated by near-infrared window light. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 10167–72 (2014).
- Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. *Nature* 458, 1025–1029 (2009).
- 186. Bailes, H. J., Zhuang, L. Y. & Lucas, R. J. Reproducible and sustained regulation of Galphas signalling using a metazoan opsin as an optogenetic tool. *PLoS One* 7, e30774 (2012).
- 187. Scheib, U. *et al.* Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain. *Nat. Commun.* **9**, 2046 (2018).
- 188. Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* **7**, 539 (2011).
- Bamann, C., Gueta, R., Kleinlogel, S., Nagel, G. & Bamberg, E. Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. *Biochemistry* 49, 267–78 (2010).
- Rich, T. C. In Vivo Assessment of Local Phosphodiesterase Activity Using Tailored Cyclic Nucleotide-gated Channels as cAMP Sensors. J. Gen. Physiol. 118, 63–78 (2001).
- Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. *Physiol. Rev.* 82, 769– 824 (2002).
- 192. Guzman, S. J., Schlögl, A. & Schmidt-Hieber, C. Stimfit: quantifying electrophysiological data with Python. *Front. Neuroinform.* **8**, 16 (2014).
- 193. Scheib, U. *et al.* The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. *Sci. Signal.* **8**, rs8 (2015).

- 194. Kumar, R. P. *et al.* Structure and monomer/dimer equilibrium for the guanylyl cyclase domain of the optogenetics protein RhoGC. *J. Biol. Chem.* jbc.M117.812685 (2017). doi:10.1074/jbc.M117.812685
- Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. *Nat. Neurosci.* 12, 229–34 (2009).
- 196. Tye, K. M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. *Nat. Rev. Neurosci.* **13**, 251–266 (2012).
- 197. Watanabe, H. C., Welke, K., Sindhikara, D. J., Hegemann, P. & Elstner, M. Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. *J. Mol. Biol.* **425**, 1795–814 (2013).
- Volkov, O. *et al.* Structural insights into ion conduction by channelrhodopsin 2. *Science* 358, eaan8862 (2017).
- 199. Kato, H. E. *et al.* Atomistic design of microbial opsin-based blue-shifted optogenetics tools. *Nat. Commun.* **6**, 7177 (2015).
- 200. Mogi, T., Stern, L. J., Marti, T., Chao, B. H. & Khorana, H. G. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. *Proc. Natl. Acad. Sci.* 85, (1988).
- 201. Marti, T., Rösselet, S. J., Otto, H., Heyn, M. P. & Khorana, H. G. The retinylidene Schiff base counterion in bacteriorhodopsin. *J. Biol. Chem.* **266**, 18674–83 (1991).
- Altenhofen, W. *et al.* Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. *Proc. Natl. Acad. Sci. U. S. A.* 88, 9868–9872 (1991).
- 203. Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure prediction server. *Nucleic Acids Res.* **43**, W389–W394 (2015).
- 204. Penzkofer, A., Scheib, U., Stehfest, K. & Hegemann, P. Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae. *Int. J. Mol. Sci.* 18, 2099 (2017).
- 205. Lupas, A., Dyke, M. Van & Stock, J. Predicting coiled coils from protein sequences. *Science (80-.).* **252,** 1162–1164 (1991).

- 206. Bharambe, N. G. *et al.* Substrate specificity determinants of class III nucleotidyl cyclases. *FEBS J.* **283**, 3723–3738 (2016).
- 207. Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* **7**, 539–539 (2014).
- 208. Santoro, B. *et al.* Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. *J. Neurosci.* **20**, 5264–75 (2000).
- 209. Brown, L. S. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. *Photochem. Photobiol. Sci.* **3**, 555 (2004).
- Brown, L. S. & Jung, K.-H. Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism. *Photochem. Photobiol. Sci.* 5, 538 (2006).
- 211. Jennifer A. Bieszke, Elena N. Spudich, Kenneth L. Scott, Katherine A. Borkovich, and & Spudich*, J. L. A Eukaryotic Protein, NOP-1, Binds Retinal To Form an Archaeal Rhodopsin-like Photochemically Reactive Pigment†. (1999). doi:10.1021/BI9916170
- 212. Bieszke, J. A. *et al.* The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. *Proc. Natl. Acad. Sci. U. S. A.* **96**, 8034–9 (1999).
- 213. Waschuk, S. A., Bezerra, A. G., Shi, L. & Brown, L. S. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. *Proc. Natl. Acad. Sci. U. S. A.* 102, 6879–83 (2005).
- 214. García-Martínez, J., Brunk, M., Avalos, J. & Terpitz, U. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. *Sci. Rep.* 5, 7798 (2015).
- Jékely, G. Evolution of phototaxis. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 364, 2795– 808 (2009).
- 216. Suzuki, T. *et al.* Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. *Biochem. Biophys. Res. Commun.* **301,** 711–7 (2003).
- Peshenko, I. V. *et al.* Enzymatic Properties and Regulation of the Native Isozymes of Retinal Membrane Guanylyl Cyclase (RetGC) from Mouse Photoreceptors. *Biochemistry* 50, 5590–5600 (2011).

- 218. Ernst, O. P. et al. Photoactivation of channelrhodopsin. J. Biol. Chem. 283, 1637–43 (2008).
- Sineshchekov, O. A., Li, H., Govorunova, E. G. & Spudich, J. L. Photochemical reaction cycle transitions during anion channelrhodopsin gating. *Proc. Natl. Acad. Sci. U. S. A.* 113, E1993-2000 (2016).
- 220. Gerwert, K. Molecular Reaction Mechanisms of Proteins Monitored by Time-Resolved FTIR-Spectroscopy. *Biol. Chem.* **380**, (1999).
- 221. Lorenz-Fonfria, V. A. *et al.* Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. *Proc. Natl. Acad. Sci.* **110**, E1273–E1281 (2013).
- 222. Niino, Y., Hotta, K. & Oka, K. Simultaneous live cell imaging using dual FRET sensors with a single excitation light. *PLoS One* **4**, e6036 (2009).
- 223. Calamera, G. *et al.* Construction of novel cGMP FRET-sensors based on PKG from Plasmodium falciparum. *BMC Pharmacol. Toxicol.* **16**, A34 (2015).
- 224. Russwurm, M. *et al.* Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach. *Biochem. J.* **407**, 69–77 (2007).
- 225. Allerston, C. K., von Delft, F. & Gileadi, O. Crystal structures of the catalytic domain of human soluble guanylate cyclase. *PLoS One* **8**, e57644 (2013).
- 226. Winger, J. A. & Marletta, M. A. Expression and Characterization of the Catalytic Domains of Soluble Guanylate Cyclase: Interaction with the Heme Domain [†]. *Biochemistry* 44, 4083–4090 (2005).
- 227. Kim, T., Folcher, M., Baba, M. D.-E. & Fussenegger, M. A Synthetic Erectile Optogenetic Stimulator Enabling Blue-Light-Inducible Penile Erection. *Angew. Chemie Int. Ed.* 54, 5933–5938 (2015).
- 228. Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P. Neuron Primer Optogenetic Tools for Subcellular Applications in Neuroscience. (2017). doi:10.1016/j.neuron.2017.09.047
- Cheepala, S. *et al.* Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters. *Annu. Rev. Pharmacol. Toxicol.* 53, 231–53 (2013).

- 230. Hahn, D. K., Tusell, J. R., Sprang, S. R. & Chu, X. Catalytic Mechanism of Mammalian Adenylyl Cyclase: A Computational Investigation. *Biochemistry* **54**, 6252–62 (2015).
- 231. Ottemann, K. M., Xiao, W., Shin, Y. K. & Koshland, D. E. A piston model for transmembrane signaling of the aspartate receptor. *Science* **285**, 1751–4 (1999).
- Airola, M. V., Watts, K. J., Bilwes, A. M. & Crane, B. R. Structure of Concatenated HAMP Domains Provides a Mechanism for Signal Transduction. *Structure* 18, 436–448 (2010).
- 233. Airola, M. V. *et al.* HAMP Domain Conformers That Propagate Opposite Signals in Bacterial Chemoreceptors. *PLoS Biol.* **11**, e1001479 (2013).
- 234. Hulko, M. *et al.* The HAMP domain structure implies helix rotation in transmembrane signaling. *Cell* **126**, 929–40 (2006).
- 235. Ferris, H. U. *et al.* The Mechanisms of HAMP-Mediated Signaling in Transmembrane Receptors. *Structure* **19**, 378–385 (2011).
- 236. Gushchin, I. *et al.* Mechanism of transmembrane signaling by sensor histidine kinases. *Science (80-.).* **356,** eaah6345 (2017).
- 237. Ishchenko, A. *et al.* New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. *Sci. Rep.* **7**, 41811 (2017).
- 238. Zhang, G., Liu, Y., Ruoho, A. E. & Hurley, J. H. Structure of the adenylyl cyclase catalytic core. *Nature* **386**, 247–253 (1997).
- 239. Ogawa, H., Qiu, Y., Ogata, C. M. & Misono, K. S. Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. *J. Biol. Chem.* **279**, 28625–31 (2004).
- Misono, K. S., Ogawa, H., Qiu, Y. & Ogata, C. M. Structural studies of the natriuretic peptide receptor: A novel hormone-induced rotation mechanism for transmembrane signal transduction. *Peptides* 26, 957–968 (2005).
- 241. Duda, T. Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism. *Mol. Cell. Biochem.* **334**, 37–51 (2010).
- 242. Kuhn, M. Molecular Physiology of Membrane Guanylyl Cyclase Receptors. *Physiol. Rev.* **96**, 751–804 (2016).

- 243. Kuhn, M. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. *Circ. Res.* **93**, 700–9 (2003).
- 244. Potter, L. R. & Hunter, T. Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. *J. Biol. Chem.* **276**, 6057–60 (2001).
- 245. Yoshida, H., Sudo, Y., Shimono, K., Iwamoto, M. & Kamo, N. Transient movement of helix F revealed by photo-induced inactivation by reaction of a bulky SH-reagent to cysteine-introduced pharaonis phoborhodopsin (sensory rhodopsin II). *Photochem. Photobiol. Sci.* **3**, 537 (2004).
- Wegener, A.-A., Chizhov, I., Engelhard, M. & Steinhoff, H.-J. Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II 1 1Edited by W. Baumeister. J. Mol. Biol. 301, 881–891 (2000).
- 247. Wegener, A.-A., Klare, J. P., Engelhard, M. & Steinhoff, H. J. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. *EMBO J.* 20, 5312–5319 (2001).
- 248. Busker, M., Neidhardt, I. & Behrends, S. Nitric Oxide Activation of Guanylate Cyclase Pushes the α1 Signaling Helix and the β1 Heme-binding Domain Closer to the Substratebinding Site. J. Biol. Chem. 289, 476–484 (2014).
- 249. Pan, J. *et al.* Probing the Molecular Mechanism of Human Soluble Guanylate Cyclase Activation by NO in vitro and in vivo. *Sci. Rep.* **7**, 43112 (2017).
- Schultz, J. E., Klumpp, S., Benz, R., Schürhoff-Goeters, W. J. & Schmid, A. Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. *Science* 255, 600–3 (1992).
- 251. Mueller, U. *et al.* The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. *Eur. Phys. J. Plus* **130**, 141 (2015).
- 252. Kabsch, W., K., W. & G., R. R. B. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132 (2010).
- 253. Sparta, K. M. et al. XDSAPP2.0. J. Appl. Crystallogr. 49, 1085–1092 (2016).
- 254. McCoy, A. J. *et al. Phaser* crystallographic software. *J. Appl. Crystallogr.* **40**, 658–674 (2007).

- 255. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta Cryst* **66**, 486–501 (2010).
- Adams, P. D. *et al. PHENIX*: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 66, 213– 221 (2010).
- Lin, K., Simossis, V. A., Taylor, W. R. & Heringa, J. A simple and fast secondary structure prediction method using hidden neural networks. *Bioinformatics* 21, 152–159 (2005).
- 258. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Brief. Bioinform.* (2017). doi:10.1093/bib/bbx108

7 Abbildungsverzeichnis

Abb. 1 Der Aufbau von Rhodopsinen	1
Abb. 2 Zoosporen von Blastocladiella emersonii bewegen sich zu grünem Licht	2
Abb. 3 Übersicht über Typ I und Typ II Rhodopsine	3
Abb. 4 Exemplarischer Aufbau und Photochemie eines Typ I Rhodopsins am Beispiel Bacteriorhodopsin (BR, PDB: 1C3W)	von
Abb. 5 Aufbau und Photozyklus von Kationen-leitenden Kanalrhodopsinen	8
Abb. 6 Schematischer Aufbau von Enzym-Rhodopsinen	12
Abb. 7 Übersicht über Typ III Adenylyl und Guanylylzyklasen	14
Abb. 8 Das Zyklase Transducer Element (CTE)	16
Abb. 9 Struktur und Mechanismus von Typ III Zyklasen am Beispiel von tmAC	18
Abb. 10 Sequenz-Vergleich der Rhodopsin-Guanylylzyklasen (RhGCs)	25
Abb. 11 Charakterisierung der RhGCs in Xenopus Oocyten mittels TEVC	27
Abb. 12 BeRhGC Charakterisierung in Xenopus Oocyten	29
Abb. 13 Spektroskopische Analyse der aufgereinigten Rh Domäne von BeRhGC	31
Abb. 14 Enzymatische Aktivität des aufgereinigten BeRhGCs	32
Abb. 15 Ni-NTA Chromatographie von BeGC	33
Abb. 16 Gelfiltration (16/60 Sephacryl S100) von BeGC und SDS-Page	34
Abb. 17 Enzymatische Aktivität der isolierten BeGC Domäne	35
Abb. 18 Sequenzen der verkürzte BeRhGC Varianten	37
Abb. 19 Elektrophysiologische Charakterisierung der N ⁴ -terminal verkürzten BeRhGCs	38
Abb. 20 Vergleich der intrazellulärer cGMP-Konzentrationen der unverkürzten und verkü	rzten
BeRhGC Versionen mittels ELISA	39
Abb. 21 Elektrophysiologische Charakterisierung der C259T BeRhGC Variante	41
Abb. 22 Elektrophysiologische Charakterisierung der D283S BeRhGC Variante	42
Abb. 23 Immunhistochemische Quantifizierung von cGMP in Oocyten Lysaten	43
Abb. 24 Anwendung von BeRhGC in CHO-K1 Zellen	45
Abb. 25 Anwendung von BeRhGC in hippokampalen Rattenneuronen	46
Abb. 26 Vergleich der Aminosäuren-Sequenzen von BeRhGC und CaRhGC	48

Abb. 27 Vergleich von CaRhGC und BeRhGC in Xenopus Oocyten	50
Abb. 28 Spektroskopische Analyse der aufgereinigten Rh Domäne von CaRhGC	52
Abb. 29 Enzymatische Aktivität des aufgereinigten CaRhGCs	53
Abb. 30 Enzymatische Aktivität der isolierten CaGC Domäne	54
Abb. 31 Elektrophysiologische und immunhistochemische Charakterisierung von tr43CaR	hGC
in Xenopus Oocyten	57
Abb. 32 Analyse der Linker-Sequenzen von Ca/BeRhGC	59
Abb. 33 Charakterisierung der P430 Mutanten und CaRhGC Chimären	60
Abb. 34 Elektrophysiologische Vergleich von CaRhGC und BeRhGC in hippokamp Rattenneuronen	palen 62
Abb. 35 Aminosäuren Sequenz-Vergleich diverser Nukleotidyl-Zyklasen	65
Abb. 36 Mutation der RhGCs zur Generierung von Rhodopsin-Adenylylzyklasen	67
Abb. 37 Enzymatische Aktivität des aufgereinigten CaRhACs	69
Abb. 38 Enzymatische Aktivität der isolierten CaAC Domäne	70
Abb. 39 Anwendung von CaRhAC in hippokampalen Rattenneuronen	73
Abb. 40 Strukturmodelle von BeGC und CaGC	75
Abb. 41 Strukturelle Überlagerung von BeGCs und GCs _{Rho} ¹⁹⁴	77
Abb. 42 Kristallstruktur von CaAC mit gebundenem ATP Analogon (2.25 Å, PDB: 50YH)	79
Abb. 43 Orientierung der CaAC β4/5 Schleifen und Vergleich mit bPAC (PDB: 5MBE)	80
Abb. 44 Einsicht in die CaAC Bindetasche mit dem ATP Analogon ATP-Sp-αS	82
Abb. 45 Vergleich von CaAC(ATP-Sp-αS) mit tmAC(ATP-Rp-αS)	83
Abb. 46 Interaktionen zwischen dem CTE Motiv und der Zyklase Domäne	96
Abb. 47 Skizzierung eines hypothetischen Aktivierungsmechanismus bei RhGC	98
Abb. 48 Sequenz-Vergleich der Rhodopsin Domänen verschiedener Spezies	. 117
Abb. 49 Sequenz-Vergleich des Coiled-Coils und der Zyklase Domäne	. 119
Abb. 50 Sequenz-Vergleich aller Rhodopsin-Guanylylzyklasen (RhGCs)	. 131
Abb. 51 Aktives Zentrum von tmAC und modellierte Bindetaschen von Ca/BeGC	. 135
Abb. 52 Intramolekulare Signalübertragung bei bPAC	. 137
Abb. 53 Analyse der Domänen-Interaktion zwischen CTE Motiv und Zyklase Domäne	. 138

8 Tabellenverzeichnis

Tabelle 1 Enzymatische Parameter von Be/CaRhGC und Be/CaGC	55
Tabelle 2 Vergleich der Ca/BeRhGC Photoströme (Medianwerte) in Neuronen	63
Tabelle 3 Enzymatische Parameter von CaRhAC/CaRhGC und CaAC/CaGC	71
Tabelle 4 Übersicht der Be/CaGC Strukturmodelle	74
Tabelle 5 Insert-PCR	. 101
Tabelle 6 Insert-PCR, 29x Wiederholung der Schritte 2 - 4	. 101
Tabelle 7 Vektor-Verdau 30 - 60 min 37 °C	. 102
Tabelle 8 Ligation, 30 min 22 °C	. 102
Tabelle 9 Quikchange-PCR	. 103
Tabelle 10 Quikchange-PCR, 18x Wiederholung der Schritte 2 - 4	. 103
Tabelle 11 Linearisierung der DNA	. 104
Tabelle 12 RNA-Synthese	. 104
Tabelle 13 Coiled-Coil Vorhersage für den CaRhGC N'-Terminus	. 121
Tabelle 14 Coiled-Coil Vorhersage für den BeRhGC N'-Terminus	. 122
Tabelle 15 Coiled-Coil Vorhersage des CaRhGC Linkers	. 123
Tabelle 16 Python-basiertes Stimfit Skript zur Auswertung der TEVC Daten	. 124
Tabelle 17 Parameter der elektrophysiologischen Messungen (TEVC aus Abb. 19 ergänzende Daten) der verkürzten BeRhGC Varianten	und 127
Tabelle 18 Parameter der ergänzenden elektrophysiologischen Messungen (TEVC, Abb zum Vergleich von BeRhGC und CaRhGC	. 27) . 128
Tabelle 19 Parameter der elektrophysiologischen Messungen (TEVC aus Abb. 31 ergänzende Daten) der verkürzten CaRhGC Variante, tr43	und 129
Tabelle 20 Kristallographische Tabelle von BeGC 1.2 Å	132
Tabelle 21 Kristallographische Tabelle von BeGC 1.5 Å	133
Tabelle 22 Kristallographische Tabelle von CaGC 1.2 Å	134
Tabelle 23 Kristallographische Tabelle von CaAC 2.25 Å	136
Tabelle 24 CTE Interaktionen basierend auf Abb. 53	139

9 Abkürzungsverzeichnis

ATP	Adenosintriphosphat
AC	Adenylylzyklase
ACR	Anionen-leitendes Kanalrhodopsin
Am	Allomyces macrogynus
АМР	Adenosinmonophosphat
APCPP	Adenosin-5'-[(α,β)-methylen]Triphosphat
ASR	Sensorisches Rhodopsin aus Anabena
ΑΤΡαS	Adenosin-5'-(α-thio)-Triphosphat
Ве	Blastocladiella emersonii
BLUF	Blaulicht-Sensoren, die FAD benutzen
BR	Bacteriorhodopsin
Са	Catenaria anguillulae
cAMP	Zyklisches Adenosinmonophosphat
сс	Coiled-Coil
cGMP	Zyklisches Guanosinmonophosphat
ChR	Kanalrhodopsin
CNG	Cyclic nucleotide-gated Channel (Kanal, der von zyklischen Nukleotiden geöffnet wird)
cNMP	Zyklisches Nukleosidmonophosphat
CTE	Zyklase Transducer Element
CyclOp	Guanylylzyklase Opsin, Rhodopsin-Guanylylzyklase
DDM	n-Dodecyl β-D-maltoside
ELISA	Enzyme linked immunosorbent Assay
ESR/EPR	Elektronenspinresonanz/ electron paramagnetic resonance
FAD	Flavin Adenin Dinukleotid
-------	--
FMN	Flavin Mononukleotid
FTIR	Fourier-Transform-Infrarot
GAF	Die GAF Domäne liegt in cGMP-spezifischen Phosphodiesterasen, Adenylylzyklases und FhIA vor.
GC	Guanylylzyklase
GMP	Guanosinmonophosphat
GPCPP	Guanosin-5'-[(α , β)-methylen]Triphosphat
GPCR	G-Protein-gekoppelter Rezeptor
Gs	Gs-Protein
Gt	Gt-Protein
GTP	Guanosintriphosphat
GTPαS	Guanosin-5'-(α-thio)-Triphosphat
НАМР	Präsent in Histidinkinasen, Adenylylzyklasen, Methyl-akzeptierenden Proteinen und Phosphatasen
HEPES	2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure
HPLC	high pressure liquid chromatography, Hochleistungsflüssigkeitschromatographie
LAPD	light-activated phosphodiesterase
LAPD	Licht-aktivierte Phosphodiesterase
MOPS	3-(N-Morpholino)propansulfonsäure
NTP	Nukleosidtriphosphat
р	Particulate (transmembranständig)
PAC	Photoaktivierte Adenylylzyklase
PAS	Die PAS Domäne wurde erstmals in period circadian protein (Per), aryl hydrocarbon receptor nuclear translocator protein (Arnt), single-minded protein (Sim) entdeckt
PDE	Phosphodiesterase
PPi	Pyrophosphat
Rh	Rhodopsin

RhAC	Rhodopsin-Adenylylzyklase
RhGC	Rhodopsin-Guanylylzyklase
RhoPDE	Rhodopsin-Phosphodiesterase
RMSD	Root mean square deviation
RSB	Retinal-Schiffbase
S	Soluble (im Cytoplasma)
SAXS	Small-angle X-ray scattering
SFO	Step-Function-Opsine
SR I	Sensorisches Rhodopsin I
SR II	Sensorisches Rhodopsin II
STHK	bakterieller cyclic nucleotide-gated K^+ Kanal aus Spirochaeta thermophila
TEVC	Two-electrode voltage clamp
tm	Transmembranständig (integral)
tmAC	Integrale (transmembranständige) Adenylylzyklase
TRIS	Tris(hydroxymethyl)-aminomethan

10 Eigenständigkeitserklärung

Hiermit versichere ich, dass ich auf Grundlage der angegebenen Hilfen und Hilfsmittel die Dissertation selbstständig erarbeitet und verfasst habe.

Berlin, den

Ulrike Scheib