3 research outputs found

    Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic

    Get PDF
    Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07 − 3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024 – 0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link between surface and benthic production and has to be further considered in the future as a regular carbon input to the deep-sea floor in the North Atlantic

    Insights into the prokaryotic communities of the abyssal-hadal benthic-boundary layer of the Kuril Kamchatka Trench

    No full text
    Abstract Background The Kuril–Kamchatka Trench (maximum depth 9604 m), located in the NW Pacific Ocean, is among the top seven deepest hadal trenches. The work aimed to investigate the unexplored abyssal-hadal prokaryotic communities of this fascinating, but underrated environment. Results As for the bacterial communities, we found that Proteobacteria (56.1–74.5%), Bacteroidetes (6.5–19.1%), and Actinobacteria (0.9–16.1%) were the most represented bacterial phyla over all samples. Thaumarchaeota (52.9–91.1%) was the most abundant phylum in the archaeal communities. The archaeal diversity was highly represented by the ammonia-oxidizing Nitrosopumilus, and the potential hydrocarbon-degrading bacteria Acinetobacter, Zhongshania, and Colwellia were the main bacterial genera. The α-diversity analysis evidenced that both prokaryotic communities were characterized by low evenness, as indicated by the high Gini index values (> 0.9). The β-diversity analysis (Redundancy Analysis) indicated that, as expected, the depth significantly affected the structure of the prokaryotic communities. The co-occurrence network revealed seven prokaryotic groups that covaried across the abyssal-hadal zone of the Kuril–Kamchatka Trench. Among them, the main group included the most abundant archaeal and bacterial OTUs (Nitrosopumilus OTU A2 and OTU A1; Acinetobacter OTU B1), which were ubiquitous across the trench. Conclusions This manuscript represents the first attempt to characterize the prokaryotic communities of the KKT abyssal-hadal zone. Our results reveal that the most abundant prokaryotes harbored by the abyssal-hadal zone of Kuril–Kamchatka Trench were chemolithotrophic archaea and heterotrophic bacteria, which did not show a distinctive pattern distribution according to depth. In particular, Acinetobacter, Zhongshania, and Colwellia (potential hydrocarbon degraders) were the main bacterial genera, and Nitrosopumilus (ammonia oxidizer) was the dominant representative of the archaeal diversity
    corecore