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Abstract 

Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, 

rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has 

been previously studied, however, the high biomass of sedimented Sargassum algae discovered 

during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its 

potential as a regular carbon input, has been an underestimated phenomenon. To determine the 

potential for this carbon flux, a literature survey of previous studies that estimated the 

abundance of surface water Sargassum was conducted. We compared these estimates with 

quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous 

underwater vehicle (AUV) directly above the abyssal sediment during the expedition. 

Organismal communities associated to Sargassum fluitans from surface waters were 

investigated and Sargassum samples collected from surface waters and the deep sea were 

biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation 

potential and the trophic significance within deep-sea communities. The estimated Sargassum 

biomass (fresh weight) in the deep sea (0.07 - 3.75 g/m2) was several times higher than that 
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estimated from surface waters in the North Atlantic (0.024 – 0.84 g/m2). Biochemical analysis 

showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, 

fatty acid and stable isotope analysis did not indicate direct trophic interactions between the 

algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food 

web form an important link between the macroalgae and larger benthic organisms. Evaluation of 

the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and 

maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna 

components. The large-scale sedimentation of Sargassum forms an important trophic link 

between surface and benthic production and has to be further considered in the future as a 

regular carbon input to the deep-sea floor in the North Atlantic.  

 

Keywords: Sargassum, sedimentation rate, carbon influx, microbial food web, protozoans, 

macrofauna, stable isotopes, fatty acids 

 

1. Introduction 

Oceans cover roughly 70% of the earth’s surface and two third of their volume is deeper than 

1000 m. Therefore, the deep sea can be considered the largest biome on earth. For a long time it 

was considered to be a single, featureless and stable environment, lacking barriers for the 

pelagic dispersal of species. Due to the absence of light, most of the deep-sea life is assumed to 

be heterotrophic and dependent on the production and sinking of organic matter from the 

surface waters to act as a carbon source (Johnson et al., 2007). Carbon flux decreases 

exponentially with depth (Suess, 1980). This creates a carbon-limited ecosystem, which leads to 

a low abundance of benthic organisms (Rex et al., 2006). Long-term studies have investigated 

surface primary production as well as sedimentation to the deep sea (e.g. Rowe and Staresinic, 

1979; Krause-Jensen and Duarte, 2016). Trap measurements of carbon flux showed the 

importance of vertical energy transport and its resulting effect on deep-sea benthic ecosystems 

(e.g. Smith et al., 2006).  

 During the Vema-TRANSIT cruise with R/V Sonne in January 2015 we were especially 

interested in the potential dispersal of benthic organisms along the Vema Fracture Zone and the 

comparison of benthic communities between the Eastern and Western Atlantic basins.  Since the 

potential dispersal of a large number of individuals over wide geographical ranges leads to a 

high gene flow, it was assumed that mainly cosmopolitan species exist (Gage and Tyler, 1991) 

and allopatric speciation was supposed to be a rare event (Palumbi, 1994). During the last four 

decades, different studies showed that the species diversity in deep-sea environments is high, 

but the underlying mechanisms are poorly understood (White, 1987; Palumbi, 1994; Rex and 

Etter, 2010). Today, the importance of water currents in the deep sea as possible pathways for 
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dispersal is basically understood (Dickson et al., 1982; Gage, 1996; Levin et al., 2001). For the 

tiny protists, the occurrence of similar genotypes has been shown in surface as well as deep-sea 

samples (e.g. Scheckenbach et al., 2005). Thus, potentially also sedimentation from surface 

aggregations (e.g. on the surface of floating macrophytes) could influence distribution patterns 

of some protists in the deep sea.  

Sargassum floating mats form a unique ecosystem comprising the accumulations of 

holopelagic brown algae, S. natans (Linnaeus) Gaillon 1828  and S. fluitans (Børgesen) Børgesen 

1914 (Laffoley et al., 2011; Huffard et al., 2014; Schell et al., 2015). Our interest in the wider 

importance of these floating systems for the abyssal areas was raised due to the detection of 

isolated branches of Sargassum on the seafloor even in single cores of multicorer samples from 

abyssal depths. The presence of relatively large clumps of Sargassum in photographs of the 

seafloor had already been reported by Schoener and Rowe (1970) and later in several 

publications (e.g. Wolff, 1979; Wei et al., 2012) giving clear evidence that Sargassum is 

sedimenting down to the deep sea. Rowe and Staresinic (1979) already estimated that 10% of 

organic carbon sedimented to the North Atlantic deep sea could be due to Sargassum. In their 

recent review, Krause-Jensen and Duarte (2016) concluded that macroalgae represent an 

important source of the overall carbon sequestered in the deep ocean. The means by which 

Sargassum sinks is still not completely understood; very little is known on the contribution of 

epifauna to the sedimentation process of Sargassum. The resulting accumulation of sedimenting 

Sargassum represents a potentially large and consistent carbon flux to deep-sea ecosystems. 

While the particular abundance and nature of holopelagic Sargassum is relatively unique to the 

North Atlantic (particularly the Sargasso Sea), the mechanism of large-scale sedimentation of 

macrophytes as a carbon flux is an important finding and is translated through the world’s 

oceans (Krause-Jensen and Duarte, 2016). One can easily imagine that accumulations of 

Sargassum might influence distribution patterns of deep-sea fauna which is generally limited in 

carbon sources. 

The importance of organic material as both a food source and habitat for sessile taxa on 

the ocean’s deep-sea floor was highlighted by several authors (e.g. Wolff, 1979; Grassle and 

Morse-Porteous, 1987; Johnson et al., 2007; Bernardino et al., 2010). Usually, the origin of such 

organic material is not well defined. Fatty acids (FAs) can be used as biomarkers because they 

are transmitted between tissues of food and feeders almost without change (Howell et al., 2004; 

Iverson et al., 2009) and so allow interpretations a out a specimens’ diet  e g   alsgaard et al   

 00    eters   00    u r  erg et al    0      he usage of   s as a  iomar er approach relies on 

the assumption that some FAs can only be synthesized by certain organisms. They become 

traceable components of an animals’ diet at higher trophic levels  Li e the    approach  sta le 

isotopes can provide information about the long-term diet of organisms (Tieszen et al., 1983; 
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Ponsard and Arditi, 2000; Laakmann and Auel, 2010). Furthermore, it is a method to detect 

relative trophic levels as well as possible carbon sources of ecosystems through selective 

metabolic fractionations.   

After our attention was attracted during the cruise by findings of leaflets of Sargassum in 

the small areas of MUC corers, we used the unique chance during the Vema-TRANSIT expedition, 

to get quantitative estimates of the Sargassum in the abyssal region using AUV photographing of 

the seafloor at the respective stations. Nano-, micro-, meio-, and macrofauna that were found on 

the surface of Sargassum were documented and compared within stations. Furthermore, we 

performed biochemical analysis on the surface and deep-sea samples, including C:N ratios as 

well as dry and ash-free dry weights to determine degradation that occurs during sedimentation. 

In addition, stable isotope and fatty-acid analysis of deep-sea macrofauna, Sargassum and 

sediment samples were conducted to investigate relative trophic levels and the potential of 

Sargassum as a direct food source for higher trophic levels.  

We hypothesized that sedimented Sargassum could reach significant biomasses compared 

to floating Sargassum in surface waters. Derived from the observations that some sedimented 

Sargassum could still contained pigments, we assumed that sedimentation should be relatively 

high. Epifauna organisms or remains of it might be visible in sedimented Sargassum. Further, we 

presumed that biochemical signals of Sargassum can be traced in macrofauna organisms.  

 

2. Material and methods 

2.1 Sampling 

Samples were collected during the VEMA Transit expedition on R/V Sonne (SO 237; December-

January 2014/15) conducted to analyze potential biological and geological differences between 

the eastern and western basins of the equatorial Atlantic (Brandt et al., this issue; Devey et al., 

this issue). The cruise followed the southern edge of the westward-directed North Equatorial 

Current and the northwestward-directed Antilles Current located within the North Atlantic 

Subtropical Gyre which includes the Sargasso Sea (Fig. 1). 

 

 

 

 

 

 

 

 

 



5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Sampling stations of VEMA Transit expedition with R/V Sonne (SO 237; December-January 
2014/15). The details of sampling gear used at the different stations are given in Table 1. Station map was 
created with Ocean Data View (Schlitzer, 2012). 
 

 

Samples of Sargassum were collected from the surface by means of a 10l bucket and fishing gear, 

while benthic deep-sea samples were collected by a camera-epibenthic sledge (C-EBS) (C-EBS, 

Brandt et al., 2013; Table 1). The nano-, micro-, meio- and macrofauna associated with the 

surface-collected Sargassum samples were microscopically investigated immediately after 

sampling (see below). Parts of the material collected from the surface as well as the deep sea 

were stored at -80°C to be used for later biochemical studies. Additionally, sediment sampled 

with a Multi-Corer (MUC) was used for biochemical studies. Deep-sea macrofauna, sampled by 

the C-EBS, were also used for stable isotope analysis.  
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Table 1 Station list of collected Sargassum fluitans from the surface and deep sea as well as stations 
sampled for sediment and fauna during the research cruise SO237. A. Surface samples. B. Deep-sea 
samples taken with the camera-epibenthic sledge (C-EBS) and Multi-Corer (MUC). C. Analysis of the 
oceanic floor by an automated underwater vehicle (AUV). Explanations of superscripts: (1) Samples used 
for biochemical analyses of Sargassum material collected from surface waters and degraded for approx. 1 
½ years under laboratory conditions in culture flasks; (2) Sargassum samples taken from surface waters; 
(3) sediment samples;  (4) sampling of deep-sea macrofauna. Sargassum samples taken from surface 
waters (A) and the deep sea (B) were used to analyze associated fauna.  

Area/ Site Date/UTC Time Depth [m] Sampling  Latitude/Longitude 
 

A. Surface samples      
A1/2 19.12.2014/ 11:32 Surface Bucket 10°43.118'N/25°03.893'W 
1A2/4  26.12.2014/ 12:16 Surface Bucket 10°25.114'N/31°04.617'W 
A2/4 28.12.2014/ 16:58 Surface Bucket 10°24.481'N/31°05.318'W 
1, 2A3/6 03.01.2015/ 14:54 Surface Fishing gear 10°14.161'N/36°31.615'W 
1A4/8 08.01.2015/ 19:10 Surface Fishing gear 10°42.645'N/42°41.893'W 
1B1/9 12.01.2015/ 00:51 Surface Fishing gear 11°41.357'N/47°57.334'W 
1C1/12 19.01.2015/ 00:54 Surface Bucket 19°43.400'N/67°08.010'W 

B. Deep-sea samples     
A1/2-6 20.12.2014 5520 C-EBS 10°42.330'N/25°05.580'W 
A1/2-7 20.12.2014 5514 C-EBS  10°41.370'N/25°05.137'W 
3A2/4-3 26.12.2014 5771 MUC  0° 5   0’N/  °04   0‘  
2, 4A2/4-8 27.12.2014 5735 C-EBS 10°24.161'N/31°06.205'W 
2, 4A2/4-9 27.12.2014 5735 C-EBS 10°24.082'N/31°04.795'W 
A3/6-7 02.01.2015 5085 C-EBS 10°20.659'N/36°57.010'W 
A3/6-8 02.01.2015 5119 C-EBS 10°21.542'N/36°57.236'W 
3A4/8-6 07.01.2015 5180 MUC  0°4  540’N/4 °4  580‘  
2, 4A4/8-4 06.01.2015 5176 C-EBS  0°4  000‘N/4 ° 9 9 0‘  
B1/9-2 11.01.2015 4995 C-EBS   °40  99‘N/48°00 07 ‘  
2, 4B1/9-8 12.01.2015 5004 C-EBS   ° 9 0 4‘N/47°5    8‘  
2, 4B2/11-1 14.01.2015 5093 C-EBS 12°05.732'N/50°30.239'W 
2, 4B2/11-4 14.01.2015 5130 C-EBS 12°04.753'N/50°30.348'W 
3B2/11-5 14.01.2015 5091 MUC   °05 400’N/50°   980‘  
C1/12-5 20.01.2015 8339 C-EBS 19°49.500'N/66°50.970'W 
C1/12-6 21.01.2015 8340 C-EBS 19°48.490'N/66°45.440'W 
C2/13-4 23.01.2015 8329 C-EBS 19°46.730'N/67°06.210'W 
C2/13-5 23.01.2015 8082 C-EBS 19°49.850'N/67°02.910'W 
C3/14-1 24.01.2015 4552 C-EBS 19°00.760'N/67°10.219'W 
C3/14-2 25.01.2015 4930 C-EBS 19°03.044'N/67°08.650'W 

C. AUV deployment 
 

Dive Number     
A3/6-2 01.01.2015 5136 ABYSS 163 10°20.998'N/36°57.616'W 
B1/9-6 12.01.2015 4977 ABYSS 165 11°42.58'N/47°59.07'W 
B2/11-3 14.01.2015 5093 ABYSS 166 12°05.99'N/50°28.4'W 

 

2.2 Biomass estimation of Sargassum  

An estimation of the biomass of Sargassum in the deep sea was carried out for three stations of 

the VEMA expedition using photos taken by an automated underwater vehicle (AUV, HYDROID 

Inc.). The AUV was deployed for mapping purposes of the seafloor, using a Pike camera mounted 

with a 15mm Nikkor underwater lens, cropped to a focal length of 22mm providing a field of 

view of 41 degrees. All approximately 27000 photos from three AUV deployments were 

screened for Sargassum (Abyss 163: 1712 photos; Abyss 165: 2153 photos; Abyss 166: 145 

photos). Out of these total 4010 Sargassum-containing pictures, every randomly chosen tenth 
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picture was quantitatively analyzed using ImageJ (https://imagej.nih.gov/ij/) regarding the 

surface area covered by Sargassum for those pictures. For a minimum estimation, Sargassum in 

the pictures was assumed to be only one layer thick. A program (Tiffy2tiff, GEOMAR, Kiel) was 

written in order to extract metadata from the photos regarding the coordinates of the AUV, 

depth, altitude above sea floor, and the pitch and roll for each photo.  Based on the lens and 

metadata, the dimensions of each photo were calculated and inserted into ImageJ to determine 

the overall surface area of the Sargassum in each photo. The average surface area coverage per 

picture was calculated for each site and then compared with the ratio of Sargassum containing 

pictures to total pictures per AUV deployment to determine a total biomass per deployment. 

Surface collected Sargassum fluitans (stored frozen at -80°C until analysis in the home lab) were 

used to determine an average weight per centimeter squared (see below), to estimate the 

biomass of Sargassum per m² in each inspected photo.  

 

2.3 Sedimentation rates of Sargassum algae 

We carried out preliminary studies on the sedimentation of freshly collected Sargassum fluitans 

on board over a depth of only 20 cm revealing first estimates of about 35 sec/m sedimentation 

rate. Since there are very few data on sedimentation rates in the literature, we further analyzed 

sedimentation rates of Sargassum. In the absence of S. fluitans, we used a non-holopelagic 

marine species (tentatively identified as Sargassum vulgare C. Agardh 1820) which has a similar 

morphology to S. fluitans. S. vulgare was collected at the coast of the Canary Islands at depth of 

two meters attached to a rocky substrate. The algae showed no signs of decomposition or 

deterioration. In order to determine the maximum sedimentation rate, all bladders were cut 

from the plant. Four replicated experiments were carried out determining the rate of 

sedimentation over a distance of 10 meters close to the sampling area of the algae in the North 

Atlantic (Puerto de Mogan, Canary Islands). Depths and times were recorded using a Mares 

Smart dive computer, while free diving.   

 

2.4 Epifauna composition on floating Sargassum 

Sargassum surface samples were collected from six stations (Table 1) during the cruise and 

analyzed to determine associated nano-, micro-, meio- and macrofauna immediately after 

sampling. For each surface sample, we selected a volume of 570 cm³ per station for an analysis 

of meio- and macrofauna. The sessile fauna was separated from the mobile fauna, while the 

supernatant with the mobile fauna was sieved through three mesh sizes (1000µm, 500µm and 

100µm). The samples were qualitatively examined for mobile micro- and macrofauna, prior to 

fixation of the selected volume in 96% ethanol. Observed species were photo-documented and 

fixed. Only organisms from 1000µm and 500µm have been analyzed so far. Quantitative 

https://imagej.nih.gov/ij/
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comparison between the six stations was not possible, thus, for standardization sessile fauna 

was investigated using a squared container with an area of 91.5 cm2. Organisms were 

investigated using a light microscope and binocular. In addition, studies were carried out by 

scanning electron microscopy (some crustaceans, mollusks). 

Nano- and microfauna was investigated in freshly collected samples suspended in 

sterilized seawater. Two sets of culture flasks at each station were used for qualitative studies. 

One set of replicates of about 4 cm³ was transferred into 50 mL tissue culture flasks (Sarstedt, 

Nümbrecht, Germany) filled with 30 mL autoclaved seawater (35 PSU). In addition, about 10 

cm² of the sample at each station were transferred to 600 mL tissue culture flasks. Culture flask 

were inspected under an inverted microscope (Zeiss Primovert with LD objectives of 10-40* 

magnification) immediately after collection of samples and in intervals of three days after 

inoculation. 

 

2.5 Biochemical analyses of Sargassum 

2.5.1 Fresh, dry and ash-free dry weights and C:N ratios  

Frozen samples from both surface and deep-sea collected Sargassum were analyzed for fresh, 

dry and ash-free dry weight, as well as C:N ratios. Immediately after sampling, samples were 

stored at -80 °C. One “leaf” per sample, with three replicates each, was selected for the 

measurements. Fresh weights were determined after blotting with filter paper to remove free 

water droplets accumulated during thawing. For determining dry weights, samples were dried 

in a compartment dryer at 80 °C until weight became constant (approx. 19 hours).  For 

determining the ash-free dry weight, dried samples were burned in a muffle furnace at 500°C for 

3 hours. For the C:N analysis, dried samples were ground to a fine powder inside small glass 

containers and weighed into pressed tin capsules (3 mg). The total content of carbon and 

nitrogen was determined using an Organic Elemental Analyzer, Flash EA 2000 from Thermo 

Scientific. In addition  “leafs” of surface water collected Sargassum incubated for 18 months at 

10°C were analyzed for C:N ratios and weights to estimate long-term degradation.  

 

2.5.2 Fatty acid analysis 

All tissue (including Polychaeta, Amphipoda, Decapoda, Asteroidea, Ophiuroidea) samples and 

Sargassum fluitans samples were lyophilized for 24 h, sediment samples for 48 h. Dry masses 

were then determined using a microbalance scale (Sartorius ISO 9001 (+/- 2 µg)), with samples 

being kept in a desiccator to prevent hydration during measurements. For the extraction, 

samples were transferred into glass vials with 4 ml of dichlormethane: methanol (DcM:MeOH) 

(2:1/v:v) for at least one week and stored at -30 °C. Afterwards, the solid parts were stored at -

80 °C for the stable isotope analysis. An internal standard solution, Tricosanoic acid (S23:0), 



9 
 

with a concentration of 0.1 mg ml-1 was added based on the dry weight of the sample. To 

maintain an equal volume of sample, the standard solution was filled up with DcM:MeOH to a 

final volume of 1 ml before 1 ml of aqueous KCl solution (0.88 %) was added. The samples were 

then centrifuged for 15 min at 1200 rpm at 0 °C and then vaporized with N2. Next, the samples 

were dissolved in 500 µl DcM:MeOH and an aliquot was stored as a backup. The rest was mixed 

with 1 ml of methanol with 3 % of concentrated Sulfuric acid (H2SO4) and heated up to 80 °C for 

4 h to esterify the FAs into their methyl ester derivatives (FAMEs) (Kattner and Fricke, 1986). 

For the FAME extraction, 2 ml of distilled water and 1 ml hexane were added. The extraction 

with hexane, centrifugation for 10 min with 1200 rpm at 0 °C and vaporization with elemental 

nitrogen (N2) was repeated three times for each sample. This was followed by dilution with 

hexane and the analysis in a gas chromatograph. The FAMEs were detected and identified using 

the retention times compared to those of Marinol, using the software Agilent OpenLab Data 

analysis, as well as analyzed manually afterwards. Dirt and blurred peaks were excluded. 

 

2.5.3 Stable isotope analysis 

Stable isotope analysis was conducted for Sargassum fluitans and sediment samples as well as 

for the sampled macrofauna including Polychaeta, Amphipoda, Decapoda, Asteroidea, 

Ophiuroidea. The Sargassum fluitans samples were roughly cleaned of epibionts and after 

defatting with DcM:MeOH, all samples were kept in a compartment drier for 24 h at 60 °C and 

were ground afterwards. To remove inorganic carbon, half of the total amount was treated with 

diluted Hydrogen chloride (HCl) (2 N) drop by drop until bubbling ceased (provoked by the 

reaction of HCl with calcium carbonate). The samples were then dried again for 24 h, whereas 

sediment samples were kept inside for 48 h. The non-acidified samples were used to analyze the 

δ15N ratio and the acidified ones to analyze the δ13C ratio. Aliquots (1 – 25 mg) were weighted 

and transferred into silver and tin capsules (HEKAtech, Germany), respectively. If enough 

material was available, triplicates of the samples were analyzed, using a CNHO- isotope- mass 

spectrometer (Nu Horizon Stable Isotope Mass Spectrometer, Nu Instruments Ltd., UK) linked to 

an elemental- analyzer (EURO- EA 3000, Euro Vector, Italy) in continuous flow configuration 

(set- up by HEKAtech, Germany). N2 and carbon dioxide (CO2) were used as standards for 

nitrogen and carbon respectively. Isotope and mass calibration were conducted by the use of the 

certified standards like IAEA- 600 Caffeine (δ13C = -27 77  ‰ V  B  S  0 04   δ15N = +  0 ‰ 

air N2  S  0   ‰   I E - NO- 3 Potassium Nitrate (δ15N = +4 7 ‰ air N2  S  0   ‰  and   5-bis 

(5-tert-butyl-2-benzoxazol-2-yl) thiophene (6.51 % N; 72.52 % C; HEKAtech, Germany). Values 

of the SIs are represented as δ-notations in per mil  ‰  deviation representing the ratio of the 

heavier to the lighter isotope (δ15N = 15N/14N, δ13C = 13C/12C) (Fry 2006) relative to their 
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international standards (AIR for nitrogen, VPDB for carbon) (Fry and Peterson, 1987; Minagawa 

and Wada, 1984). 

 

2.5.4 Statistics 

One-way analyses of variance (ANOVA) tests were performed to check for significance in 

variation between the ratios of organic material weight to total weight of the different samples 

using software StatPlus. Two-way analyses of variances (ANOVAs) including two factors and an 

interaction between them were performed to test differences of fatty acid (FA) and stable 

isotope composition between the taxonomic groups and the three areas using the software R. 

The Shapiro-Wilk test was conducted to prove normal distribution. The Levene test was used to 

check for the homogeneity of variances. Outliers were detected using the Cooks distance. To gain 

specific information a out the differences  etween the factor levels a  u ey’s HS  post hoc test 

was performed. The confidence level was 95 %, so the significance level was 5 % (α = 0.05). If 

the assumptions were not complied the significance level was raised up to 1 % (α = 0.01). A 

principal component analysis (PCA) was performed using the software PASW Statistics 20.0 

(SPSS) comparing the FA profiles between the different groups taking the ten most important 

FAs into account. This test requires a normal distribution, so an arcsine square root 

transformation was applied for the percentage data of the FAs. 

 

3. Results 

3.1. Biomass estimation of sedimented Sargassum 

During the expedition, floating Sargassum could be observed on the surface in all regions; 

sedimented Sargassum could be detected in all EBS-C sledge samples and AUV recordings (Fig. 

2A-I). Biomass of sedimented Sargassum was estimated for each of the three AUV deployment 

areas. An average surface area (m2) of sedimented Sargassum per photo, total surface area (m2) 

per site, total biomass (kg) per area, and biomass (g/m2) was calculated (Table 2). The biomass 

was calculated using an average mass of 0.65 g/cm2 taken from the frozen surface sample.  

Sargassum found at area B1 showed evidence of bioturbation (Fig. 2H), both in and around the 

algae, with large patches missing within the aggregation. This area also had the highest 

occurrence of macroscopically visible fauna in AUV photos, including fish, shrimp and 

holothurians. Area A3 had consistently larger patches of Sargassum, with little or no evidence of 

bioturbation. Macrofauna was visible in these photos, but at a much lower frequency. 
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Figure 2 A, B Sargassum algae aligned along Langmuir circulation. C: Beginning of sedimentation of 
Sargassum algae. D: Collected sample of Sargassum fluitans from surface waters. E: Pieces of sedimented 
Sargassum algae collected by C-EBS. Samples were sieved (300 µm) to remove sediment. F: Thallus of 
Sargassum collected in sediment core by a Multi-Corer (MUC) from the deep sea. G: Photo of Sargassum on 
sea floor taken by C-EBS at 5100 m depth (area A3). H, I: Photos of sedimented Sargassum algae on 
seafloor taken by AUV from around 5000 m water depth and a nominal altitude of 8 m above the seafloor 
(areas B1 and A3, respectively).    

 

Area B2 had the least amount of Sargassum in the photos. Aggregations were sparse, with only 

small branches in most photos. There were significant differences in substrate quality noted in 

AUV photos with soft sediment dominating in the first two AUV deployments while mostly rock 

with little sediment overlay dominated the last deployment (area B2). The area B2 was at the 

center of the VEMA transform fault (VTF) and, unfortunately, only a small area could be 

inspected by this AUV dive. Multiple faults were visible in the photos, which were suggested by 

the geological survey to be tectonically active.  
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Table 2 Sargassum biomass (fresh weight) in the abyssal of the southern North Atlantic estimated from 
photos taken by AUV deployments. 

Area/Site/ 
Dive No. 

Depth 
(m)/Area 
(km2) 

No. of 
photos 
taken  

No. of 
photos with 
Sargassum/ 
photos 
analyzed 

Average 
biomass of 
Sargassum 
per photo 
with 
Sargassum 
(g) 

Average 
surface 
area per 
analyzed 
photo 
(m2) 

Total 
surface area 
(m2) of 
photos from 
a 
deployment  

Total 
biomass in 
deployment 
area (kg) 

Biomass 
per 
deploy-
ment 
area (g/ 
m2) 

A3/6-2/ 
Abyss 163 

5136/4.5 9217 1712/171 1161 0.18 306.0 1989.3 3.75 

B1/9-6/ 
Abyss 165 

4977/0.2 9576 2153/215 335 0.05 111.1 722.5 1.29 

B2/11-3/ 
Abyss 166 

5093/23 8112 145/14 241 0.04 5.4 35.0 0.07 

 

3.2 Abundance estimation of surface Sargassum from literature  

3.3 Sedimentation rate of Sargassum 

Preliminary experiments carried out during the expedition onboard, revealed an estimated rate 

of sinking of freshly collected Sargassum fluitans (all bladders removed to estimate maximum 

sinking rate) of 2.5 km per day (undisturbed). With this estimated sinking rate a sample of 

Sargassum (ø 10 cm) would take between 2 and 2.5 days to reach abyssal depths. We 

investigated the maximum sedimentation rate of Sargassum vulgare in more detail at the coast of 

the Canary Islands. The experiments revealed an average rate of 2 m min-1 (± 0.48) estimated 

during four 10-meter runs. Based on these tests at maximum sedimentation, it would take a 

sample of Sargassum approximately 1.7 days to reach a depth of 5,000 meters, resulting in a 

sedimentation rate of approximately 2,900 m per day.  

 

3.4 Epifauna composition on floating Sargassum 

3.4.1 Meio- and macrofauna 

From the floating Sargassum collected at the six stations, individuals belonging to five different 

phyla were found, including Caenogastropoda (Gastropoda), Cheilostomatida (Bryozoa), 

Leptothecata (Cnidaria), Polycladida (Plathelminthes) and Sabellida, Phyllodocida, Clitellata 

(Annelida) (Table 3). Preliminary results indicated the presence of epibiotic bryozoans (genus 

Membranipora de Blainville, 1830), and the annelid worm Spirorbis sp. at all sampled stations. 

There was little variation in the diversity of the sessile and motile fauna between the different 

stations with the most common sessile organisms being Spirorbis sp. and Jellyella cf. tuberculata 

(Bosc, 1802). The most common motile organism was the gastropod Litiopa melanostoma Rang, 

1829, which was found at all sites except for site 8. However, juveniles and veliger stages of this 

species were only found at the two easternmost stations. Site 8 in area 4 (A4/8) was the only 

site where we detected the crab Portunus sayi (Gibbes, 1850). An undetermined shrimp was 

found with heavy infections by bopyrid isopods. The copepod Scutellidium cf. longicauda and the 

isopod Carpias minutus were the most frequent crustaceans. 
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Table 3 Recorded meio-and macrofauna from sampled surface Sargassum fluitans. For site 4 at sampling 
area 2 we collected Sargassum twice: on the 26th of December 2014 (*) and on the 28th of December (**).   

Sargassum community from surface samples Surface stations (area/site) 

A1/2 *A2/4 **A2/4 A3/6 A4/8 B1/9 C1/12 

Gastropoda - Caenogastropoda           
 Litiopa melanostoma Rang, 1829  

 
Χ Χ Χ Χ  Χ Χ 

Gastropoda - Opistobranchia         
      Doto sp.      Χ       
Polychaeta - Sabellida          
 Spirorbis sp.  Χ Χ Χ Χ Χ Χ Χ 
Polychaeta - Phyllodocida - Nereididae  Χ    Χ   
Clitellata   Χ Χ     Χ 
Gymnolaemata - Cheilostomatida         
 Jellyella cf. tuberculata (Bosc, 1802)   Χ Χ Χ Χ Χ Χ Χ 
Rhabditophora - Polycladida          
 Gnesioceros sp.    Χ  Χ  Χ Χ 
Hydrozoa - Leptothecata          
 Clytia sp.   Χ Χ      
 Aglaopheniidae sp.    

  
 Χ Χ Χ Χ 

Crustacea - Maxillopoda - Harpacticoida      
 Scutellidum cf. longicauda (Philippi, 1840) Χ Χ Χ Χ   Χ 
 Paralaophonte cf. congenera (G.O. Sars, 1908) Χ Χ  Χ    
 Harpacticus cf. gurneyi Jakubisiak, 1933 

 
Χ Χ  Χ  Χ 

 Dactylopusia cf. tisboides (Claus, 1863)   
  

Χ    Χ 
Crustacea - Maxillopoda - Poecilostomatoida          
 Macrochiron cf. sargassi G.O. Sars, 1916 

 
   

  
Χ Χ Χ 

Crustacea - Malocostraca - Decapoda           
 Portunus sayi (Gibbes, 1850) 

Hippolyte cf. coerulescens (Fabricius, 
1775) 

  
Χ 

  
Χ 

     X 
Χ 

  

 Latreutes fucorum (Fabricius, 1798) 
 

     Χ Χ Χ 
Crustacea - Malacostraca - Isopoda          
 Isopoda sp. 1 

 
    Χ    

 Isopoda sp. 2 
 

       Χ 
 Isopoda sp. 3 

 
       Χ 

  Carpias minutus (Richardson, 1902)     Χ Χ Χ Χ Χ   

 

3.4.2 Micro- and nanofauna 

The surface of Sargassum was densely populated at all areas investigated. Among protists 

associated with floating Sargassum fluitans, we found representatives of nearly all phylogenetic 

groups (Table 4). Regarding diversity, heterotrophic flagellates dominated including 

cryptomonads, apusomonads, thaumatomonads, ancyromonads, choanoflagellates, 

stramenopiles, cercomonads, bodonids, euglenids and dinoflagellates. Remarkable was the 

record of the filasterean Ministeria vibrans, which was confirmed by molecular studies (18S 

rDNA) and high resolution video-enhanced microscopy.  Some “rhi opod” species appeared 

including foraminiferans, labyrinthulids, different forms of heteroloboseans and rhizarians. 

There were obvious differences in the diversity observed for the different samples, sites 2 (area 

A1) and 8 (area A4) contained the largest number of taxa, though quantitative estimates were 

not carried out. After one week of cultivation, ciliates comprising representatives of very 
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different taxonomic groups dominated the community in all raw cultures. A few epiphytic 

diatoms present in all samples represented the autotrophic fraction of epiphytes.  

 

Table 4 Recorded protists from sampled surface Sargassum fluitans. Taxonomic groups summarized 
following Adl et al. (2012).  

Sargassum community from surface samples Surface stations (area/site) 

A1/2 *A2/4 A3/6 A4/8 B1/9 

Incertae sedis 
     

 
Kiitoksia sp. 

   
Χ  

Cryptomonadida 
     

 
Goniomonas sp. 

   
Χ 

 Apusomonadida 
     

 
Amastigomonas sp. Χ 

    Ancyromonadida 
    

     

 
Ancyromonas sp. Χ 

        Fabomonas tropica Glücksman & Cavalier-Smith, 
2013          X 
Amoebozoa 

     
 

Undet. amoebid Χ Χ Χ Χ Χ 

 
Undet. vannellid 

   
Χ 

 
 

Undet. dactylopodid 
  

Χ 
  

 
Thecamoeba sp. 1 Χ Χ 

 
Χ 

 
 

Thecamoeba sp. 2 
 

Χ 
 

Χ 
 

 
Vahlkampfia 

  
Χ 

  Filasterea      

    Ministeria vibrans Tong, 1997  X    
Choanoflagellata 

     
 

Monosiga-like Χ 
    

 
Stephanoeca sp. Χ 

    
 

Salpingoeca tuba Kent, 1880 Χ 
    

 
Salpingoeca cf. frequentissima Zacharias, 1894 Χ 

    
 

Salpingoeca sp. 
  

Χ Χ Χ 
Excavata - Euglenida 

     
 

Anisonema-like 1 Χ Χ Χ Χ Χ 

 
Anisonema-like 2 Χ Χ Χ Χ Χ 

 
Petalomonas sp. 

  
Χ 

  
 

Peranema sp. 
  

Χ 
  Excavata - Kinetoplastea 

     
 

Neobodo designis (Skuja, 1948) Vickerman, 2004 Χ Χ Χ Χ Χ 

 

Neobodo curvifilus (Larsen & Patterson, 1990) 
Moreira et al. 2004 

Χ 

   

Χ 

 
Rhynchomonas nasuta (Stokes, 1888) Klebs, 1892 Χ 

    
 

Bodo sp. 
   

Χ Χ 
Excavata - Heterolobosea 

     

 

Percolomonas cosmopolitus (Ruinen, 1938) 
Fenchel & Patterson, 1986 

Χ 

    
 

Vahlkampfia sp.  Χ 
   Stramenopiles - Dictyochophyceae 

      Ciliophrys sp.          X 

 
Pteridomonas danica Patterson & Fenchel, 1985 Χ 

 
Χ Χ 

 Stramenopiles - Actinophyridae  
 

  
 

 
Actinophrys sp. 

   
Χ 

 Stramenopiles - Bicosoecida 
     

 
Caecitellus sp. 

  
Χ 

 
Χ 

 
Cafeteria roenbergensis  Fenchel & Patterson, 1988 Χ Χ Χ Χ Χ 

 
Pseudobodo sp. Χ Χ Χ Χ Χ 

Stramenopiles - Labyrinthulomycetes      

 
Labyrinthulids   Χ   

  
Rhizaria - Foraminifera 

     
  

 
Rotaliidae Χ 

    
  

 
Reticulomyxa-like 

    
Χ 

  

 
Globigerina-like Χ 

    
  

Rhizaria - Thaumatomonadida 
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Thaumatomonas sp. Χ 

  
Χ 

 
  

 
Glissomonas-like 

  
Χ Χ Χ 

  

 
Massisteria marina Larsen & Patterson, 1990  

  
Χ Χ Χ 

  
Rhizaria - Metromonadea 

     
  

 
Metromonas sp. 1 Χ Χ Χ Χ 

 
  

 
Metromonas sp. 2 Χ 

    
  

 
Metopion sp. 

   
Χ 

 
  

Alveolata - Dinoflagellata  
    

  

 
undet. Dinoflagellata X 

    
  

Ciliophora - Hypotricha 
     

  

 
Euplotes sp. 1  Χ Χ Χ Χ 

 
  

 
Euplotes sp. 2 Χ Χ Χ 

  
  

 
Diophrys sp. Χ 

 
Χ Χ 

 
  

 
Dysteria sp. Χ 

 
Χ Χ 

 
  

 
Aspidisca sp. Χ 

  
Χ 

 
  

Ciliophora - Stichotrichia 
     

  

 
undet. Stichotrichid 

 
Χ Χ Χ 

 
  

Ciliophora - Suctoria 
     

  

 
Suctoria undet. 

  
Χ 

  
  

Ciliophora - Protocruzia 
  

 
  

  

 
Protocruzia sp. 

 
Χ Χ 

  
  

Ciliophora - Scuticociliata 
     

  

 
Cinetochilum sp. Χ 

    
  

 
Cristigera setosa Kahl, 1928 Χ 

    
  

Ciliophora - Oligotrichia 
     

  

 
undet. Oligotrichia Χ 

    
  

Ciliophora - Karyorelictea 
     

  

 
Tracheloraphis sp. Χ 

    
  

 
Pleuronema sp. Χ 

    
  

 
Litonotus sp. Χ 

    
  

 
Blepharisma-like 

  
Χ 

  
  

Ciliophora - Peritrichia  
     

  
  Cothurnia-like Χ         

  
For site 4 at sampling (area 2) we collected twice Sargassum: on the 26th of December 2014 and on the 28th of December. For the 
protist community we only determined protist communities from the 26th of December 2014 (*). In area C1, protists were present 
but could not be analyzed in detail due to time constraints onboard.   

 
3.5 Biochemical analysis of Sargassum 
3.5.1 Fresh, dry and ash-free dry weights and C:N ratios 

Weights were measured from two floating Sargassum samples stored at -80°C (three replicates), 

five surface material samples that were stored at 10°C for degradation (three replicates), and 

seven deep-sea samples stored at -80°C (three replicates). Values for the fresh, dry and ash free 

dry weights were averaged between the three sample types (surface material, surface material 

degraded, deep-sea material). Using the ash-free dry weight, the percentages of organic material 

to total weight were calculated and then averaged resulting in 64.0 (± 6.2) % for surface 

material, 46 (± 5.2) % for surface material degraded material, and 54 (± 9.7) % for deep-sea 

material. The ratio of organic weight to total weight showed significant differences within all the 

three sample types (one-way ANOVA, p<0.001). The C:N ratios were determined for each sample 

weighed, and averages were calculated based on sample location (Fig. 3). Due to high variance 

there was no significant difference between the three sample types (one-way ANOVA, p>0.05).  



16 
 

 

Figure 3 Percentage of organic material for surface material, surface material degraded, and deep-sea 
material of Sargassum samples (left axis, white columns), and C:N ratio (right axis, black columns). 
 

3.5.2 Fatty acid analysis 

Stations were pooled from one area for the analysis. The variability within the samples of 

Sargassum was high and no significant difference between the depths could be detected. The five 

most abundant fatty acids (FAs) in the Sargassum samples were 16:0, 18:0, 18:1(n-9), 20:4(n-6) 

and 22:6(n-3) with ranges of 9.9%- 39.1%, 3.4%- 11.7%, 4.1%- 10.9%, 1.3%- 20.8% and 1.2%- 

10%, respectively (Table S1). Having a closer look at the ten most abundant FAs in all analyzed 

samples, the S. fluitans samples revealed a low and not consistent FA composition neither 

between the depths, nor between areas (Fig. 4). 

 

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

Surface material Surface material
degraded

Deep-sea material

C
:N

 r
a

ti
o

  

O
rg

a
n

ic
 m

a
te

ri
a

l 
(%

) 

Organic material C:N ratio



17 
 

 

Figure 4 Mean values of Sargassum fluitans sampled in the deep sea (A) and surface (B) for the ten most 
abundant fatty acid [%] of total fatty acid contents (TFA) from the three different areas. 
 

3.5.3 Stable isotope analysis 

 he sta le δ15N values revealed a clustered picture for each sampled group (Fig. 5). Therefore, 

significant differences between the sediment, the Sargassum samples and the abyssal specimens 

could  e detected   he δ13C values showed a wide range among the groups from -  ‰ to - 9‰ 

but were consistent within each taxonomic group (Fig. 5). Only the sediment samples revealed a 

statistic-supported separation from all other groups. However, no obvious difference between 

the eastern and western side of the Mid-Atlantic Ridge (MAR) was detectable. 
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Figure 5 Biplot overview of stable isotope composition for organisms of different taxa, sediment and 
Sargassum fluitans at different stations (site/area), minimum and maximum values served as error bars. 
The symbol color indicates the kind of sample, while the shape of symbols indicates the sample origin. 
Sampling sites and respective sampling area are given in brackets. 

 

To determine the relative trophic levels of the taxa  sampled in area     the mean δ15N values 

were compared (Figure S1). The Sargassum fluitans material showed the lowest values  0   ‰ 

for Sargassum_surface/ 0 8 ‰ for Sargassum_deep) followed by the sediment samples 

    8‰   The mean value of the sediment samples    7‰  was used as the  aseline of the 

enrichment process, thus, two relative trophic levels scarcely could be identified.  

 

4. Discussion    

Mass occurrences of Sargassum are well known from the North Atlantic and Gulf of Mexico (e.g. 

Butler et al., 1983; Gower and King, 2008) and can also form inundation events (Schell et al., 

2015). Floating mats of Sargassum can be aggregated by Langmuir circulations and in areas of 

converging currents (Haney, 1986). With increasing biomass, there is an accumulation of 

organic nutrients and a development of communities within these mats (e.g. Huffard et al., 

2014). Earlier studies revealed an increase of diversity of benthic communities in habitats which 

are enriched with Sargassum (e.g. Smith and Hessler, 1987; Grassle and Morse-Porteous, 1987). 

It was argued that sedimentation of these algal mats offer a potential food source for deep-sea 

communities (Schoener and Rowe, 1970; Wolff, 1979; Turner and Rooker, 2006). To get an idea 



19 
 

regarding the relative importance of sedimented Sargassum biomass, we tried to relate our own 

estimates of sedimented Sargassum biomass with that reported for floating Sargassum.  

 

4.1 Biomass estimation of Sargassum  

4.1.1 Estimation of floating Sargassum biomass from literature  

For a comparison with sedimented Sargassum, we reviewed available quantitative estimates of 

floating Sargassum in the North Atlantic. Free floating species of Sargassum, like that found in 

the Gulf of Mexico and the North Atlantic, have  een studied since at least the  8 0’s  and have 

been part of marine lore, as in the naming of the Sargasso Sea (Gower and King, 2008). Various 

groups, like NOAA (http://www.noaa.gov) and the Sargasso Sea Alliance 

(http://www.sargassoalliance.org), in conjunction with the Bermuda government, have 

compiled previous reports, as well as conducted primary research (neuston pulls) to determine 

abundance, positioning and movement of Sargassum algae within the Gulf of Mexico and North 

Atlantic (Schell et al., 2015). Data were also collected from NOAA, NASA, and ESA satellites using 

MODIS and MERIS imaging (Stoner, 1983; Butler and Stoner, 1984; Gower and King, 2008; Siuda, 

2011). There are a few abundance estimates available for different years and periods (Table 3). 

Separate tows conducted and published by Stoner (1983) that occurred between 1977 and 1981 

compared the average Sargassum biomass of the Sargasso Sea, the Bahamas and the Gulf Stream. 

 hese results were compared with tows made  y  arr in the  9 0’s for the same areas  and 

concluded that the overall biomass of pelagic Sargassum had decreased over a period of about 

50 years (Stoner, 1983). However, a later publication by Butler and Stoner (1984) questioned 

this conclusion on the basis that Stoner did not consider seasonal variation of Sargassum 

a undance  Gower and King’s   008  studied the movement of free floating Sargassum between 

the Gulf of Mexico and Atlantic Ocean using satellite-imaging data and Medium Resolution 

Imaging Spectrometer (MERIS) from the European Space Agency. They calibrated the satellite 

data with ship measurements from the corresponding months (Gower and King, 2008). The 

MERIS study also referenced previous studies  y  arr in the  9 0’s of free floating Sargassum in 

the western North Atlantic (Parr, 1939 cited in Gower and King, 2008). During fall, quantities of 

Sargassum were greater in the North Sargasso Sea (average of 0.27 g/m2) than in the South (0.03 

g/m2), while the reverse was noted for spring (0.12 and 0.18 g/m2 respectively). It was also 

shown that there was an increased overall abundance during fall, with an average biomass of 

0.30 g/m2 throughout the year (Siuda, 2011). Siuda (2011) used 1999 individual neuston-tow 

pulls conducted from 1973 to 2010 by SEA from Woods Hole Oceanographic Institute to 

determine local and seasonal differences. A recent review of Schell et al. (2015) clearly showed 

strong annual fluctuations of floating Sargassum biomass determined by neuston tows during 

autumn studies with peaks in recent years causing inundation events. We summarized all data 

http://www.sargassoalliance.org/
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available to us in Table 5, where we tried to standardize the estimates of Sargassum biomass 

(fresh weight) by the different authors as biomass per m².  

 

Table 5 Biomass estimates (fresh weight) for Sargassum recorded from the North Atlantic by different 

authors. 

Source Biomass  
 

Year Location Area for 
recalculation 

Biomass 
recalculated 
[g/m²] 

Parr (1939) 7 million tons 1933 North Atlantic 41.5 M km² 0.169  
 11 million tons  1934 North Atlantic 41.5 M km² 0.265  
 4 million tons  1935 North Atlantic 41.5 M km² 0.096  
Stoner (1983) 74 mg/m2  1977-1981 Sargasso Sea  0.074  
 165 mg/m2 1977-1981 The Bahamas  0.165  
 280 mg/m2 1977-1981 Gulf Stream  0.28  
Gower and King (2008) 1 million tons 2002-2008 Gulf of Mexico 1.6 M km² 0.625  
 1 million tons 2002-2008 North Atlantic  41.5 M km² 0.024  
Siuda (2011) 0.39 g/m2 1977-2010 North Sargasso Sea  0.39  
 0.21 g/m2  1977-2010 South Sargasso Sea  0.21  
Schell et al. (2015) 0.17 g/m2 1995-2013  South Sargasso Sea  0.17 
 0.23 g/m2 2014/2015 South Sargasso Sea  0.23 
 0.25 g/m2 2011/2012 South Sargasso Sea  0.25 
 0.0027 g/m2 1992-2013 West. Trop. North Atlantic  0.0027 
 0.07 g/m2 2011 West. Trop. North Atlantic  0.07 
 0.84 g/m2 2014 West. Trop. North Atlantic  0.84 

 

With the literature reviewed in this study, there are consistent findings of large quantities of 

holopelagic Sargassum throughout the North Atlantic, Caribbean Sea and Gulf of Mexico. Studies 

looking into the abundance of Sargassum have regularly shown these quantities, leading to the 

assumption that, while seasonal variances occur, there is a consistent supply of Sargassum 

throughout these waters to serve as a potential carbon flux to the deep sea through 

sedimentation. These findings are supported by the amount and frequency of Sargassum noted 

during the present expedition. Other studies have shown that these floating aggregations of 

algae can support a large diversity of marine organisms in surface waters (Fine, 1970; Settle, 

1993), as they provide feeding grounds, refuge areas and, thus, increase habitat complexity 

(Fine, 1970; Kingsford, 1995).  

The interactions between these organisms could possibly lead to nutrient enrichment of 

the Sargassum mats, as well as an enhanced primary production indicated by findings of 20:5(n-

3) as a diatom marker in the sediment. Normally equatorial oceans are generally considered to 

be oligotrophic and therefore exhibit a lower total primary production rate than coastal or polar 

areas. In contrast, Uitz et al. (2010) found increased microplankton concentrations (diatoms) in 

the studied area which could explain the higher proportions of 20:5(n-3) found in the organisms 

and in the sediment. The increased amount of organic matter could be explained by the influence 

of the NECC transporting nutrients and POM from the coastal areas of the African and American 

continents. This assumption is also supported by the theory of Oschlies and Garcon (1998) who 

predicted an increase of primary production in areas of strong eddy kinetics which are found in 
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the studied region. Furthermore, trophic interactions on Sargassum might initiate the 

sedimentation process by removal of the bladders through grazing and degradation (Fig. 2C). 

The resulting vertical transfer of energy includes not only the Sargassum itself, but potentially 

also the community of organisms on its surface. 

 

4.1.2 Biomass estimates of sedimented Sargassum  

Three different AUV deployments during the VEMA Transit expedition showed the presence of 

Sargassum algae on the seafloor at high abundances, which was additionally confirmed by 

qualitative samples of Sargassum taken with the camera of the C-EBS as well as by the sledge. 

Analysis of the AUV photos revealed a biomass density of up to 3.75 g/m2 and the lowest density 

of 0.07 g/m2. These results fall within the biomass previously estimated for Sargassum at the 

surface (Table 5). While area B1 showed a 20 times higher biomass density compared to the 

estimated surface density, one needs to consider that surface communities of Sargassum tend to 

aggregate in large mats, some noted to be over a kilometer in length, and are not evenly 

distributed through the North Atlantic. Variation in the appearance of Sargassum between the 

different sites and stations could show differences in the role that it plays, depending on the 

surrounding organisms. The Sargassum found at area A3 had a consistently larger biomass per 

clump than the other two areas (B1, B2), with little signs of bioturbation. However, at area B1, 

the majority of Sargassum found had signs of bioturbation surrounding it (Fig. 2H). We assume 

that this might be caused by the treatment of Sargassum by benthic animals (Schoener and 

Rowe, 1970; Wolff, 1979), although we had no direct photographic evidence. Schoener and 

Rowe (1970) presented the first direct evidence for high abundance of Sargassum in the abyssal. 

They found Sargassum clumps of varying sizes in varying degrees of degradation at 33 of 150 

stations in the western North Atlantic off North Carolina by a camera survey. Here we present 

the first quantitative data indicating the high potential contribution of Sargassum to the matter 

flux in the southern part of the North Atlantic. We consider AUV studies to be a very useful tool 

to quantify sedimented macroalgae and to get a better insight into particle flux from the surface 

to deep-sea communities.    

 

4.1.3 Sedimentation of Sargassum 

Sedimentation rates of Sargassum determine how viable it could be as a source of carbon for 

deep-sea ecosystems. If the rate is too slow, there might be a decrease in usable carbon and 

nutrients, either due to degradation, or consumption by other organisms in the water column. 

The rate of sedimentation found in this study is in theory a maximum potential sedimentation 

rate, based on the removing of all bladders (pneumatocysts) from the algae, thus, decreasing the 

buoyancy. The two different sedimentation tests conducted, the preliminary one on board the 
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R/V Sonne cruise with S. fluitans and the study at the Canary Islands using S. vulgare, showed 

similar rates (5000 m in 48 hours). Both of these tests removed all the bladders from the plants, 

and while they were done with two different species, we assume that similar results would 

occur with other morphometrically similar species of algae. It must be noted, however, that a 

maximum sedimentation rate with all bladders being removed is unlikely to be found naturally. 

That leaves an important question as to what causes the initial sedimentation of the algae. It is 

possible that some of the bladders need to be removed before the initiation of sedimentation 

begins, however, as previously mentioned, the nutrification and development of surface dwelling 

organisms on the algae can have an effect on the sinking rates, potentially initiating the 

sedimentation process (Turner and Rooker, 2006). Moreover, the compression of bladders with 

increasing depth will further reduce the buoyancy of the algae. 

Schoener and Rowe (1970) determined sedimentation rates of Sargassum preserved in 

10% Formalin 3.3 (2.8-4.0) cm/sec and calculated a sedimentation to 5000 m depth to occur 

within 41 hours. This value is in the same range as our estimates using live specimens. It is not 

known what caused a change in its specific gravity. Schoener and Rowe (1970) argued that there 

could be changes in the integrity of the air bladders at a critical shallow depth which would 

result in rapid sinking or there might be a high specific gravity by slow degradation. Johnson and 

Richardson (1977) have shown in experiments with pressure chambers that the depth, at which 

the whole Sargassum plants lost their positive buoyancy and sank, appeared to be an inverse 

function of the rate of hydrostatic pressure change, indicating that the slower the plant descent 

the shallower the depth at which sinking occurred due to positive buoyancy loss. They 

calculated that, once negatively buoyant, Sargassum will sink to the sea floor in about 40 h. This 

value is again in the same range as estimated in the present study. In accordance with Johnson 

and Richardson (1977) we argue sedimentation may occur via several mechanisms: 1) 

fragmentation of weed clumps due to wave action with the subsequent sinking of the older parts 

which are more heavily populated by epibenthic micro- and macroorganisms (Fig. 2C; Tables 3 

and 4); 2) diseased Sargassum may lose its buoyancy; 3) entrainment of Sargassum clumps in 

the zones of convergence and down welling associated with Langmuir circulation cells and large 

scale down welling. For vital Sargassum, Woodcock (1993) hypothesized that the algae may be 

adapted to a cyclic submergence in the wind-induced vertical currents, returning to the surface 

only when the currents are less than the plant’s rise rate. This phenomenon might support the 

maintenance of their holopelagic life.  

The well preserved Sargassum clumps in the AUV photos might be explained by a steady 

sedimentation and replacement of degraded material at relatively high rates or a very slow 

degradation rate. The biochemical data support this ambivalent view. However, several facts 

support the first explanation: 1) macrofauna is known to feed on and destroy Sargassum in the 
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deep (e.g. Schoener and Rowe, 1970; Wolff, 1979; Grassle and Morse-Porteous, 1987); 2) 

macrofauna was present at relatively high abundances at the three investigated areas (Brandt et 

al., this issue; Riehl et al. this issue) and might have fed at least indirectly on Sargassum (see 

below); 3) traces of macrofauna activities around Sargassum clumps were recorded (Fig. 2H). 

 

4.2 Epifauna composition on Sargassum 

The analysis of floating Sargassum revealed a diverse community. Regarding the epiphytic meio- 

and macrofauna, the random occurrence of the shrimp Latreutes fucorum, the polychaete 

Platynereis dumerilli, the turbellarian Planocera cf. pellucida and the nudibranch gastropod Doto 

sp. fits well with the observations of previous studies (e.g. Weis, 1968; Fine, 1970; Stoner and 

Greening, 1984; Huffard et al., 2014). It has been shown that many organisms known to be found 

in the Sargasso Sea also occur further south and east of the Atlantic as previously described, 

where mats of floating Sargassum can still be found. The recorded meio- and macrofauna might 

well be responsible for the destruction of bladders of Sargassum directly or indirectly by feeding 

and thereby stimulating microbes which destroy the algal cell layers (Johnson and Richardson, 

1977).  

 Regarding the nano- and microfauna, a community structure was found as it is typical for 

marine sediments (e.g. Arndt et al., 2000). Many taxa we observed were also recorded from 

oceanic detritus (Patterson et al., 1993; Arndt et al., 2003). Thus, a potential transatlantic 

distribution of benthic protists by Sargassum would be possible. The preliminary studies 

revealed that most of the recorded taxa belong to ubiquitously distributed protists (e.g. 

Patterson and Lee, 2000). The protistan fauna obviously contributes to a diverse microbial food 

web on the Sargassum surface. Some peritrichous ciliates feed on pico- and nanoplankton 

surrounding the Sargassum, several choanoflagellate species and stramenopile heterotrophic 

flagellates feed on the surrounding bacterioplankton. All other protists, however, belonged to 

surface dwelling forms feeding on attached bacteria and algae stimulating the degradation of 

Sargassum by exerting a strong grazing pressure on bacteria biofilms. Several protist species 

were found to survive drastic increases in hydrostatic pressure occurring during sinking 

 Živaljić et al   this issue   thus, the grazing impact might continue during the sedimentation 

process of Sargassum, as several representatives have been found alive on sedimenting detritus 

from deep-sea samples (Patterson et al., 1993; Arndt et al., 2003). 

 To check, whether the epiphytic fauna from the surface might give rise to the population of 

the deep-sea benthos, we did preliminary studies on blades of Sargassum collected by the C-EBS 

(meio- and macrofauna) or the Multi-Corer. Several blades were inspected for meio- and 

macrofauna and three blades obtained from undisturbed MUC cores revealed no protists in 

direct observations or cultures. Though we did not find any species identified by our 
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investigations of surface samples of Sargassum, at least several nanoprotists we found on the 

floating Sargassum have been recorded from the deep sea (e.g. Neobodo spp., Cafeteria sp., 

Patterson et al., 1993; Arndt et al., 2003; Scheckenbach et al., 2010). Thus, a potential 

contribution of protists sedimenting with Sargassum to the oceanic floor cannot be ruled out at 

least for some nanofauna species. Regarding the epiphytic meio- and macrofauna on sedimented 

Sargassum, we could not record any organism. These finding might be influenced by the 

sampling technique which has potentially washed away attached organisms. Future studies with 

more refined methods are necessary to study this matter. At the moment, we have to assume 

that even though there are high densities of a very diverse epifauna on floating Sargassum, only 

a few organisms might be transferred to the deep-sea communities. 

 

4.3 Biochemical analysis and potential carbon flux from sedimented Sargassum 

4.3.1 Fresh, dry and ash-free dry weights and C:N ratios 

The analysis of dry and ash-free dry weights showed significant differences between samples 

collected at the surface and those collected from the deep sea. Samples that were collected from 

the surface and immediately stored at -80°C had a higher percentage of organic content than 

samples collected from the surface and degraded for 18 months at 10°C and deep-sea samples, 

stored at -80°C. It should be expected that degradation is noted between the surface sample 

immediately frozen and the surface sample stored at 10°C for 18 months. Furthermore, 

degradation was also seen in the deep-sea samples that were frozen at -80°C immediately after 

sampling. This could be a result of degradation on the way of sedimentation or due to 

degradation in the abyss. Since the sinking rate is relatively high when bladders are destructed, 

it has to be assumed that the major part of the degradation takes place in the abyssal sediment. 

While destruction of Sargassum blades at 10°C for 18 months was very obvious, visual 

inspection of the Sargassum collected directly from the abyss showed only little destruction, and 

plant structures remained intact (see discussion above).  

C:N ratios found in our study were typical of marine plants, however, with high variance 

even between similar samples. Literature cites values of between 4 and 10 for marine 

phytoplankton, between 15 and 50 for holopelagic Sargassum depending on if it is found in the 

neritic zone or the open ocean, and a general tendency for higher values with increasing depth 

(Müller, 1977; Atkinson & Smith, 1982; Meyers, 1994; Lapointe 1995). Due to high variability, 

our results of the C:N analysis did not show statistically significant differences between the 

surface Sargassum and deep-sea samples. This has to be addressed in future studies.   
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4.3.2 Fatty acids (FA) analysis 

Macroalgae, like S. fluitans, are often characterized by distinct FA compositions affecting 

organisms of higher trophic levels. This makes them a useful biomarker to reveal information 

about food webs (Graeve et al., 2001). Unfortunately, the FA composition of the S. fluitans 

samples was not consistent, thus no specific FA or a distinct composition could be detected. This 

could have various reasons; maybe it is due to seasonal differences in polyunsaturated FAs 

(PUFAs) signatures for S. fluitans (Turner and Rooker, 2006) influenced by light intensity, 

salinity, temperature and available nutrients (Thompson et al., 1990; Thompson et al., 1992). It 

could also be due to the material biochemically changing during the floating time, aging, and 

sinking processes (Mintenbeck et al., 2007; Galloway et al., 2012; Galloway, 2013) or an 

increased microbial abundance (McArthur et al., 1992; Chen et al., 2008). Also the associated 

epibionts could affect the FA measurements and lead to scattered results. From freshwater 

systems it is known that bacterivorous protists might change the PUFA signature (Martin-

Creuzburg et al., 2005). We found large numbers of bacterivorous protists being active at the 

surface of Sargassum feeding on attached bacteria.  

The PCA of the ten most abundant FAs (16:1(n-7), 18:1(n-7), 18:1(n-9), 20:1(n-11), 

22:1(n-7), 24:1(n-13), 19:2, 20:4(n-6), 20:5(n-3) and 22:6(n-3)) revealed a clear separation of 

the different taxa showing a clustered picture of the Opheliidae (Polychaeta), 

Porcellanasteroidae (Asteroidea) and Ophiuridae (Ophiuroidea), but a scattered image for the 

seven different Amphipoda families. Different taxonomic groups have distinct FA patterns 

consistent within the groups. The fatty acid 20:4(n-6) had the biggest proportion followed by 

18:1(n-9) and 16:1(n-7). This pattern is also found by Khotimchenko (1991) for Sargassum. 

Furthermore, 20:4(n-6) is discussed to be a biomarker for the entire taxonomic group of brown 

algae (Hanson et al., 2010). Turner and Rooker (2006) hypothesized that heterotrophs utilizing 

the S. fluitans rely more on the enhanced phytoplankton production and the associated 

epibionts, and some analyzed organisms showed higher proportions of those FAs. Our own 

investigation on the components of the microbial food web indicates that the majority of 

microbes take advantage of the biofilm on the surface of Sargassum blades. This leads to the 

assumption that, at least for some organisms, S. fluitans could serve as a food source in the 

studied region.  

 

4.3.3 Stable isotope (SI) analysis 

Considering the SI results in this study  the very low δ15N values of the S. fluitans samples (mean 

value= 0 5 ‰  and the relatively large gap  efore the first analy ed megafaunal group 

 Ophiuridea= 8   ‰   it is unli ely that the macroalgae serve as a direct food source for higher 

trophic levels, while it possibly might be consumed by protists. Protists are known to upgrade 
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the food quality for higher trophic levels (Martin-Creuzburg et al., 2005, 2006). The abyssal 

seafloor as a food limited habitat is suggested to generate mainly opportunistic feeders using 

every available food source including wood falls (e.g. Becker et al., 2009; Hoyoux et al., 2009). 

Therefore, a gap of 2.5 relative trophic levels between the possible food source and the small 

sized Ophiuridae seem to be very unlikely. The sediment with its organic matter (and the 

microbial food web on Sargassum), however, leads to a more justified result considering the SI. 

FAs are faster incorporated than the heavy isotopes. Therefore, the slightly increased amounts of 

20:4(n-6) could be a signal of the algal material whereas no sign could be detected in the SI 

patterns. However, microbes (bacteria and protists) in the upper sediment layers can rapidly 

alter FAs during deposition via biodegradation and/or chemical degradation as a consequence of 

the created surrounding (Eclinton, 1973). Regardless of whether S. fluitans is directly or 

indirectly used as a food source for metazoans, the floating algae have likely a very significant 

impact on the environment, on the surface as well as in the deep sea. 

 

5. Conclusion 

Deep-sea ecosystems are generally limited by carbon availability. We add quantitative estimates 

suggesting that floating Sargassum could act as an important input of organic carbon to the deep 

sea in the southern North Atlantic. While previous studies had looked at carbon flux into the 

deep sea, the sedimentation rates and potential for large quantities of macrophytes to 

significantly contribute to this flux has been rarely studied (for a recent review see Krause-

Jensen and Duarte, 2016). We show that there is a large biomass of sedimented Sargassum algae 

on the seafloor which can be in the same range as that at the surface and should play an 

important role for benthic production – sinking rates of Sargassum are probably high (~2 days 

to 5000m water depth) allowing little time for degradation or consumption. While these are only 

estimates, the results show that a significant part of the production of Sargassum at the surface 

waters eventually reaches the deep sea, at least in the area of the southern North Atlantic 

covered during the Vema-TRANSIT expedition. Analysis of fatty acids and stable isotopes 

indicate that macrofauna might not directly consume Sargassum in the abyssal, but probably via 

the components of the abyssal microbial food web including bacteria and protists (probably 

several trophic levels) as it is known already for macrofauna making use of wood falls (Becker et 

al., 2009; Hoyoux et al., 2009). The particular phenomenon of large-scale sedimentation of 

Sargassum as a regular carbon input has to be much more considered. Further studies are 

needed to determine to what extent deep-sea organisms rely on this source of energy.  
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