98 research outputs found
(How) Can Appliances be Designed to Support Less Energy-Intensive Use? Insights from a Field Study on Kitchen Appliances
This paper presents findings from a study carried out to contribute to the growing knowledge base within the Design for Sustainable Behaviour research field. Coffee makers, electric kettles and toasters were evaluated to explore if and why particular appliances may mediate less energy-intensive use to a greater extent than others. Eighteen participants used three appliances of the same type for two weeks each, during which the participantsâ use of the appliances and the resulting energy use were monitored. In addition, semi-structured interviews and online surveys were conducted to explore how the appliancesâ functions and overall design influenced energy use. The findings show that both specific functions and the design as a whole form the design characteristics that set preconditions for energy use. The study thus suggests that if appliances are not designed to support energy conservation holistically, there is a risk that aspects that have not been addressed will lead to more energy-intensive use. This makes it essential for designers to consider the full variety of characteristics influencing energy use. Based on the findings, design opportunities were identified and design guidelines formulated. The insights gained highlight new opportunities for design practice that can aid designers in designing for less energy-intensive use
Untersuchung von Salatsorten/-linien auf Feldresistenz gegenĂŒber Falschem Mehltau
Eleven lettuce cultivars were tested for field resistance against Bremia lactucae.
Although the presence of a large number of physiological races of Bremia lactucae
was evidenced to be present in various German regions, preliminary results show two
lettuce cultivars with a promisingly low susceptibility to downy mildew in three different
locations
Report No. 24: Analysis of the Social Agendas
Study conducted for the European Parliament, Bonn 2010 (135 pages)
07281 Abstracts Collection -- Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs
From 8th to 13th July 2007, the Dagstuhl Seminar ``Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
The Aspergillus giganteus antifungal protein AFPNN5353 activates the cell wall integrity pathway and perturbs calcium homeostasis
Background
The antifungal protein AFPNN5353 is a defensin-like protein of Aspergillus giganteus. It belongs to a group of secretory proteins with low molecular mass, cationic character and a high content of cysteine residues. The protein inhibits the germination and growth of filamentous ascomycetes, including important human and plant pathogens and the model organsims Aspergillus nidulans and Aspergillus niger.
Results
We determined an AFPNN5353 hypersensitive phenotype of non-functional A. nidulans mutants in the protein kinase C (Pkc)/mitogen-activated protein kinase (Mpk) signalling pathway and the induction of the α-glucan synthase A (agsA) promoter in a transgenic A. niger strain which point at the activation of the cell wall integrity pathway (CWIP) and the remodelling of the cell wall in response to AFPNN5353. The activation of the CWIP by AFPNN5353, however, operates independently from RhoA which is the central regulator of CWIP signal transduction in fungi.
Furthermore, we provide evidence that calcium (Ca2+) signalling plays an important role in the mechanistic function of this antifungal protein. AFPNN5353 increased about 2-fold the cytosolic free Ca2+ ([Ca2+]c) of a transgenic A. niger strain expressing codon optimized aequorin. Supplementation of the growth medium with CaCl2 counteracted AFPNN5353 toxicity, ameliorated the perturbation of the [Ca2+]c resting level and prevented protein uptake into Aspergillus sp. cells.
Conclusions
The present study contributes new insights into the molecular mechanisms of action of the A. giganteus antifungal protein AFPNN5353. We identified its antifungal activity, initiated the investigation of pathways that determine protein toxicity, namely the CWIP and the Ca2+ signalling cascade, and studied in detail the cellular uptake mechanism in sensitive target fungi. This knowledge contributes to define new potential targets for the development of novel antifungal strategies to prevent and combat infections of filamentous fungi which have severe negative impact in medicine and agriculture.FWF, P19970-B11, Characterization of the toxicity of PA
GABA-glycine cotransmitting neurons in the ventrolateral medulla: development and functional relevance for breathing
Inhibitory neurons crucially contribute to shaping the breathing rhythm in the brain stem. These neurons use GABA or glycine as neurotransmitter; or co-release GABA and glycine. However, the developmental relationship between GABAergic, glycinergic and cotransmitting neurons, and the functional relevance of cotransmitting neurons has remained enigmatic. Transgenic mice expressing fluorescent markers or the split-Cre system in inhibitory neurons were developed to track the three different interneuron phenotypes. During late embryonic development, the majority of inhibitory neurons in the ventrolateral medulla are cotransmitting cells, most of which differentiate into GABAergic and glycinergic neurons around birth and around postnatal day 4, respectively. Functional inactivation of cotransmitting neurons revealed an increase of the number of respiratory pauses, the cycle-by-cycle variability, and the overall variability of breathing. In summary, the majority of cotransmitting neurons differentiate into GABAergic or glycinergic neurons within the first 2 weeks after birth and these neurons contribute to fine-tuning of the breathing pattern
Integrating biological vasculature into a multi-organ-chip microsystem
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A chip-based system mimicking the transport function of the human cardiovascular system has been established at minute but standardized microsystem scale. A peristaltic on-chip micropump generates pulsatile shear stress in a widely adjustable physiological range within a microchannel circuit entirely covered on all fluid contact surfaces with human dermal microvascular endothelial cells. This microvascular transport system can be reproducibly established within four days, independently of the individual endothelial cell donor background. It interconnects two standard tissue culture compartments, each of 5 mm diameter, through microfluidic channels of 500 ÎŒm width. Further vessel branching and vessel diameter reduction down to a microvessel scale of approximately 40 ÎŒm width was realised by a two-photon laser ablation technique applied to inserts, designed for the convenient establishment of individual organ equivalents in the tissue culture compartments at a later time. The chip layout ensures physiological fluid-to-tissue ratios. Moreover, an in-depth microscopic analysis revealed the fine-tuned adjustment of endothelial cell behaviour to local shear stresses along the microvasculature of the system. Time-lapse and 3D imaging two-photon microscopy were used to visualise details of spatiotemporal adherence of the endothelial cells to the channel system and to each other. The first indicative long-term experiments revealed stable performance over two and four weeks. The potential application of this system for the future establishment of human-on-a-chip systems and basic human endothelial cell research is discussed.BMBF, 0315569, GO-Bio 3: Multi-Organ-Bioreaktoren fĂŒr die prĂ€diktive Substanztestung im Chipforma
Building ProteomeTools based on a complete synthetic human proteome.
We describe ProteomeTools, a project building molecular and digital tools from the human proteome to facilitate biomedical research. Here we report the generation and multimodal liquid chromatography-tandem mass spectrometry analysis of \u3e330,000 synthetic tryptic peptides representing essentially all canonical human gene products, and we exemplify the utility of these data in several applications. The resource (available at http://www.proteometools.org) will be extended to \u3e1 million peptides, and all data will be shared with the community via ProteomicsDB and ProteomeXchange
- âŠ