24 research outputs found

    Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice

    Get PDF
    BACKGROUND: Type 2 diabetes is associated with obesity, ectopic lipid accumulation and low-grade inflammation. A dysfunctional gut microbiota has been suggested to participate in the pathogenesis of the disease. Green tea is rich in polyphenols and has previously been shown to exert beneficial metabolic effects. Lactobacillus plantarum has the ability to metabolize phenolic acids. The health promoting effect of whole green tea powder as a prebiotic compound has not been thoroughly investigated previously. METHODS: C57BL/6J mice were fed a high-fat diet with or without a supplement of 4% green tea powder (GT), and offered drinking water supplemented with Lactobacillus plantarum DSM 15313 (Lp) or the combination of both (Lp + GT) for 22 weeks. Parameters related to obesity, glucose tolerance, lipid metabolism, hepatic steatosis and inflammation were examined. Small intestinal tissue and caecal content were collected for bacterial analysis. RESULTS: Mice in the Lp + GT group had significantly more Lactobacillus and higher diversity of bacteria in the intestine compared to both mice in the control and the GT group. Green tea strongly reduced the body fat content and hepatic triacylglycerol and cholesterol accumulation. The reduction was negatively correlated to the amount of Akkermansia and/or the total amount of bacteria in the small intestine. Markers of inflammation were reduced in the Lp + GT group compared to control. PLS analysis of correlations between the microbiota and the metabolic variables of the individual mice showed that relatively few components of the microbiota had high impact on the correlation model. CONCLUSIONS: Green tea powder in combination with a single strain of Lactobacillus plantarum was able to promote growth of Lactobacillus in the intestine and to attenuate high fat diet-induced inflammation. In addition, a component of the microbiota, Akkermansia, correlated negatively with several metabolic parameters known to be risk factors for the development of type 2 diabetes

    Exploring food concepts for the prevention of type 2 diabetes

    No full text
    There is currently a dramatic and global increase in obesity, type 2 diabetes (T2D) and associated metabolic disorders. T2D can be delayed or prevented in individuals at risk and identifying and developing new food concepts for the prevention of obesity and T2D is of utmost importance. This thesis describes our work on exploring new food concepts for the prevention of T2D. We have used 3T3-L1 adipocytes, and C57BL/6J mice as experimental models and we have also carried out an intervention study in humans. We found that whole grain rye is better at preventing body weight gain than whole grain wheat in C57BL/6J mice fed a low-fat diet. The lower body weight reflected reduced adiposity and smaller adipocyte size and was accompanied by lower levels of circulating leptin. The reduction in adiposity could not be explained by alterations in the expression of genes involved in adipogenesis or lipogenesis. Furthermore, whole grain rye lowered plasma cholesterol and triacylglycerol, unlike whole grain wheat. Whole grain rye contains several bioactive components, including alkylresorcinols (ARs). We showed that ARs isolated from rye bran suppress catecholamine-stimulated lipolysis in 3T3-L1 adipocytes. Obesity and insulin-resistant states are often characterised by a dysfunctional adipose tissue with insufficient trapping of fatty acids. Our results suggest that intake of ARs could lead to lower levels of circulating fatty acids in vivo which could have beneficial effects in relation to insulin resistance. Furthermore, we showed that a large dose of rose hip induces several beneficial metabolic effects in mice, including anti-obesity effects, reduced hepatic lipid accumulation, reduced plasma cholesterol and improved glucose tolerance. The reduced hepatic lipid accumulation was accompanied by lowered plasma alanine aminotransferase levels, and was associated with a down-regulation of the hepatic lipogenic programme. However, lower doses of rose hip failed to induce anti-obesity effects in obese non-diabetic humans. Also, no effect of rose hip on glucose tolerance was observed in humans, probably due to the lack of effect on adiposity. However, rose hip induced a reduction in total plasma cholesterol as well as in the LDL to HDL ratio in both mice and humans. The beneficial effects of rose hip could be attributed to increased faecal excretion of both triacylglycerol and cholesterol

    Rose hip supplementation increases energy expenditure and induces browning of white adipose tissue

    Get PDF
    Background: Overweight and obesity are widespread chronic disorders defined as excessive fat accumulation, and are major risk factors for several chronic diseases including type 2 diabetes, coronary heart disease, high blood pressure and fatty liver. Changes in lifestyle such as increased physical activity and a healthy diet can be crucial tools for treating obesity. Intake of rose hip, the fruit of several plants belonging to the Rosaceae family, has been shown to reduce body fat mass and prevent body weight gain. Thus, the aim of the study was to elucidate potential mechanisms through which rose hip inhibit diet-induced obesity. Methods: C57BL/6 J mice were fed a high fat diet with (RH) or without (CTR) rose hip supplementation for three months. In vivo indirect calorimetry was monitored, as well as gene expression and protein levels of different adipose depots. Results: Although no differences in energy intake were found compared to the CTR group, RH prevented body weight gain and lowered blood glucose, insulin and cholesterol levels. Indirect calorimetry showed that RH-fed mice have significantly higher EE during the dark phase, despite comparable voluntary activity. Moreover, when challenged with treadmill running, RH-fed mice exhibited higher metabolic rate. Therefore, we hypothesized that RH could stimulate the brown adipose tissue (BAT) thermogenic capacity or may induce browning of the white adipose tissue (WAT). Compared to the CTR group, gene expression and protein levels of some brown and "brite"markers, together with genes able to promote brown adipocyte differentiation and thermogenesis (such as ucp1, tbx15, bmp7, and cidea), as well as phosphorylation of AMPK, was increased in WAT (but not in BAT) of RH-fed mice. Conclusions: Taken together these results indicate that dietary rose hip prevents body weight gain by increasing whole body EE and inducing browning of WAT. Thus, it has potential therapeutic implication for treatment of obesity and related metabolic disorders

    Rye bran alkylresorcinols suppress adipocyte lipolysis and hormone-sensitive lipase activity

    No full text
    The effects of alkylresorcinols (ARs) isolated from rye bran on adipocyte lipolysis, hormone-sensitive lipase activity and phosphorylation and on phosphorylation of protein kinase A substrates were studied. Preincubation with ARs for 18 h suppressed catecholamine-stimulated lipolysis in 3T3-L1 adipocytes. Furthermore, phosphorylation of hormone-sensitive lipase (HSL), a key lipase responsible for stimulated lipolysis, and phosphorylation of protein kinase A substrates, were diminished after preincubation with ARs, whereas HSL protein expression was unaltered. ARs were also shown to inhibit HSL activity in an in vitro assay

    Plasma membrane cyclic nucleotide phosphodiesterase 3B (PDE3B) is associated with caveolae in primary adipocytes.

    Get PDF
    Caveolae, plasma membrane invaginations particularly abundant in adipocytes, have been suggested to be important in organizing insulin signalling. Insulin-induced activation of the membrane bound cAMP degrading enzyme, phosphodiesterase 3B (PDE3B) is a key step in insulin-mediated inhibition of lipolysis and is also involved in the regulation of insulin-mediated glucose uptake and lipogenesis in adipocytes. The aim of this work was to evaluate whether PDE3B is associated with caveolae. Subcellular fractionation of primary rat and mouse adipocytes demonstrated the presence of PDE3B in endoplasmic reticulum and plasma membrane fractions. The plasma membrane PDE3B was further analyzed by detergent treatment at 4 degrees C, which did not solubilize PDE3B, indicating an association of PDE3B with lipid rafts. Detergent-treated plasma membranes were studied using Superose-6 chromatography which demonstrated co-elution of PDE3B with caveolae and lipid raft markers (caveolin-1, flotillin-1 and cholesterol) at a Mw of > 4000 kDa. On sucrose density gradient centrifugation of sonicated plasma membranes, a method known to enrich caveolae, PDE3B co-migrated with the caveolae markers. Immunoprecipitation of caveolin-1 using anti caveolin-1 antibodies co-immunoprecipitated PDE3B and immunoprecipitation of flag-PDE3B from adipocytes infected with a flag-PDE3B adenovirus resulted in co-immunoprecipitation of caveolin-1. Studies on adipocytes with disrupted caveolae, using either caveolin-1 deficient mice or treatment of adipocytes with methyl-beta-cyclodextrin, reduced the membrane associated PDE3B activity. Furthermore, inhibition of PDE3 in primary rat adipocytes resulted in reduced insulin stimulated glucose transporter-4 translocation to caveolae, isolated by immunoprecipitation using caveolin-1 antibodies. Thus, PDE3B, a key enzyme in insulin signalling, appears to be associated with caveolae in adipocytes and this localization seems to be functionally important. (c) 2006 Elsevier Inc. All rights reserved

    Dietary rose hip exerts antiatherosclerotic effects and increases nitric oxide-mediated dilation in ApoE-null mice

    No full text
    Atherosclerosis is a disease in which atheromatous plaques develop inside arteries, leading to reduced or obstructed blood flow that in turn may cause stroke and heart attack. Rose hip is the fruit of plants of the genus Rosa, belonging to the Rosaceae family, and it is rich in antioxidants with high amounts of ascorbic acid and phenolic compounds. Several studies have shown that fruits, seeds and roots of these plants exert antidiabetic, antiobesity and cholesterol-lowering effects in rodents as well as humans. The aim of this study was to elucidate the mechanisms by which rose hip lowers plasma cholesterol and to evaluate its effects on atherosclerotic plaque formation. ApoE-null mice were fed either an HFD (CTR) or HFD with rose hip supplementation (RH) for 24 weeks. At the end of the study, we found that blood pressure and atherosclerotic plaques, together with oxidized LDL, total cholesterol and fibrinogen levels were markedly reduced in the RH group. Fecal cholesterol content, liver expression of Ldlr and selected reverse cholesterol transport (RCT) genes such as Abca1, Abcg1 and Scarb1 were significantly increased upon RH feeding. In the aorta, the scavenger receptor Cd36 and the proinflammatory Il1β genes were markedly down-regulated compared to the CTR mice. Finally, we found that RH increased nitric oxide-mediated dilation of the caudal artery. Taken together, these results suggest that rose hip is a suitable dietary supplement for preventing atherosclerotic plaques formation by modulating systemic blood pressure and the expression of RCT and inflammatory genes

    Increased whole body energy expenditure and protection against diet-induced obesity in Cyp8b1-deficient mice is accompanied by altered adipose tissue features

    No full text
    The aim of this study was to elucidate mechanisms whereby bile acids exert beneficial metabolic effects, using theCyp8b1(-/-)mouse as model. These mice are unable to synthesize cholic acid, resulting in increased synthesis of chenodeoxycholic acid and enlarged bile acid pool.Cyp8b1(-/-)mice were found to be protected against high-fat diet induced obesity. Bomb calorimetry measurements showed increased faecal energy output inCyp8b1(-/)mice. Indirect calorimetry measurements demonstrated increased energy expenditure inCyp8b1(-/-)mice. Meal tolerance tests revealed no differences in glucose disposal, but the insulin response was lower inCyp8b1(-/-)mice. Intravenous glucose tolerance tests, as well as static incubations of isolated islets, showed no difference between the groups, whereas insulin tolerance tests demonstrated improved insulin sensitivity inCyp8b1(-/-)mice. The genes encoding mitochondrial transcription factor A (TFAM) and type 2-iodothyronine deiodinase were upregulated in brown adipose tissue ofCyp8b1(/-)mice and Western blot analyses showed increased abundance of TFAM, and a trend towards increased abundance of UCP1. The upregulation of TFAM and UCP1 was accompanied by increased mitochondrial density, as shown by transmission electron microscopy. White adipocytes ofCyp8b1(-/-)mice exhibited increased responsiveness to both catecholamines and insulin in lipolysis experiments and increased insulin-stimulated lipogenesis. In conclusion, increased energy expenditure, mitochondrial density of brown adipocytes and faecal energy output may all contribute to the protection against diet-induced obesity ofCyp8b1(-/-)mice. Enhanced insulin sensitivity ofCyp8b1(-/-)mice is accompanied by increased hormonal responsiveness of white adipocytes

    Rose hip exerts anti diabetic effects via a mechanism involving downregulation of the hepatic lipogenic program

    No full text
    Andersson U, Henriksson E, Strom K, Alenfall J, Goransson O, Holm C. Rose hip exerts antidiabetic effects via a mechanism involving downregulation of the hepatic lipogenic program. Am J Physiol Endocrinol Metab 300: E111-E121, 2011. First published October 19, 2010; doi:10.1152/ajpendo.00268.2010.-The aim of this study was to investigate the metabolic effects of a dietary supplement of powdered rose hip to C57BL/6J mice fed a high-fat diet (HFD). Two different study protocols were used; rose hip was fed together with HFD to lean mice for 20 wk (prevention study) and to obese mice for 10 wk (intervention study). Parameters related to obesity and glucose tolerance were monitored, and livers were examined for lipids and expression of genes and proteins related to lipid metabolism and gluconeogenesis. A supplement of rose hip was capable of both preventing and reversing the increase in body weight and body fat mass imposed by a HFD in the C57BL/6J mouse. Oral and intravenous glucose tolerance tests together with lower basal levels of insulin and glucose showed improved glucose tolerance in mice fed a supplement of rose hip compared with control mice. Hepatic lipid accumulation was reduced in mice fed rose hip compared with control, and the expression of lipogenic proteins was downregulated, whereas AMP-activated protein kinase and other proteins involved in fatty acid oxidation were unaltered. Rose hip intake lowered total plasma cholesterol as well as the low-density lipoprotein-to-high-density lipoprotein ratio via a mechanism not involving altered gene expression of sterol regulatory element-binding protein 2 or 3-hydroxymethylglutaryl-CoA reductase. Taken together, these data show that a dietary supplement of rose hip prevents the development of a diabetic state in the C57BL/6J mouse and that downregulation of the hepatic lipogenic program appears to be at least one mechanism underlying the antidiabetic effect of rose hip
    corecore