6 research outputs found

    The SH3 Domains of Endophilin and Amphiphysin Bind to the Proline-rich Region of Synaptojanin 1 at Distinct Sites That Display an Unconventional Binding Specificity

    Get PDF
    The proline-rich domain of synaptojanin 1, a synaptic protein with phosphatidylinositol phosphatase activity, binds to amphiphysin and to a family of recently discovered proteins known as the SH3p4/8/13, the SH3-GL, or the endophilin family. These interactions are mediated by SH3 domains and are believed to play a regulatory role in synaptic vesicle recycling. We have precisely mapped the target peptides on human synaptojanin that are recognized by the SH3 domains of endophilins and amphiphysin and proven that they are distinct. By a combination of different approaches, selection of phage displayed peptide libraries, substitution analyses of peptides synthesized on cellulose membranes, and a peptide scan spanning a 252-residue long synaptojanin fragment, we have concluded that amphiphysin binds to two sites, PIRPSR and PTIPPR, whereas endophilin has a distinct preferred binding site, PKRPPPPR. The comparison of the results obtained by phage display and substitution analysis permitted the identification of proline and arginine at positions 4 and 6 in the PIRPSR and PTIPPR target sequence as the major determinants of the recognition specificity mediated by the SH3 domain of amphiphysin 1. More complex is the structural rationalization of the preferred endophilin ligands where SH3 binding cannot be easily interpreted in the framework of the "classical" type I or type II SH3 binding models. Our results suggest that the binding repertoire of SH3 domains may be more complex than originally predicted

    Evolutionary transition pathways for changing peptide ligand specificity and structure

    No full text
    We identified evolutionary pathways for the inter- conversion of three sequentially and structurally unrelated peptides, GATPEDLNQKL, GLYEWGGARI and FDKEWNLIEQN, binding to the same site of the hypervariable region of the anti-p24 (HIV-1) monoclonal antibody CB4-1. Conversion of these peptides into each other could be achieved in nine or 10 single amino acid substitution steps without loss of antibody binding. Such pathways were identified by analyzing all 7 620 480 pathways connecting 2560 different peptides, and testing them for CB4-1 binding. The binding modes of intermediate peptides of selected optimal pathways were characterized using complete sets of substitution analogs, revealing that a number of sequential substitutions accumulated without changing the pattern of key interacting residues. At a distinct step, however, one single amino acid exchange induces a sudden change in the binding mode, indicating a flip in specificity and conformation. Our data represent a model of how different specificities, structures and functions might evolve in protein–protein recognition

    The cellular ratio of immune tolerance (immunoCRIT) is a definite marker for aggressiveness of solid tumors and may explain tumor dissemination patterns.

    No full text
    The adaptive immune system is involved in tumor establishment and aggressiveness. Tumors of the ovaries, an immune-privileged organ, spread via transceolomic routes and rarely to distant organs. This is contrary to tumors of non-immune privileged organs, which often disseminate hematogenously to distant organs. Epigenetics-based immune cell quantification allows direct comparison of the immune status in benign and malignant tissues and in blood. Here, we introduce the "cellular ratio of immune tolerance" (immunoCRIT) as defined by the ratio of regulatory T cells to total T lymphocytes. The immunoCRIT was analyzed on 273 benign tissue samples of colorectal, bronchial, renal and ovarian origin as well as in 808 samples from primary colorectal, bronchial, mammary and ovarian cancers. ImmunoCRIT is strongly increased in all cancerous tissues and gradually augmented strictly dependent on tumor aggressiveness. In peripheral blood of ovarian cancer patients, immunoCRIT incrementally increases from primary diagnosis to disease recurrence, at which distant metastases frequently occur. We postulate that non-pathological immunoCRIT values observed in peripheral blood of immune privileged ovarian tumor patients are sufficient to prevent hematogenous spread at primary diagnosis. Contrarily, non-immune privileged tumors establish high immunoCRIT in an immunological environment equivalent to the bloodstream and thus spread hematogenously to distant organs. In summary, our data suggest that the immunoCRIT is a powerful marker for tumor aggressiveness and disease dissemination
    corecore