9,839 research outputs found

    Small-mass effects in heavy-to-light form factors

    Get PDF
    We present the heavy-to-light form factors with two different non-vanishing masses at next-to-next-to-leading order and study its expansion in the small mass. The leading term of this small-mass expansion leads to a factorized expression for the form factor. The presence of a second mass results in a new feature, in that the soft contribution develops a factorization anomaly. This cancels with the corresponding anomaly in the collinear contribution. With the generalized factorization presented here, it is possible to obtain the leading small-mass terms for processes with large masses, such as muon-electron scattering, from the corresponding massless amplitude and the soft contribution.Comment: 20 pages, 4 figures, 1 ancillary file, published versio

    Magnetic Resonant excitations in High-{Tc\rm T_c} superconductors

    Full text link
    The observation of an unusual spin resonant excitation in the superconducting state of various High-Tc ~copper oxides by inelastic neutron scattering measurements is reviewed. This magnetic mode % (that does not exist in conventional superconductors) is discussed in light of a few theoretical models and likely corresponds to a spin-1 collective mode.Comment: 4 figures, Proceedings conference MSM'03 (september 2003) in Monastir (Tunisia) to be published in Phys. Stat. Solid

    Two resonant magnetic modes in an overdoped high-Tc\bf T_c superconductor

    Full text link
    A detailed inelastic neutron scattering study of the overdoped high temperature copper oxide superconductor Y0.9Ca0.1Ba2Cu3O7{Y_{0.9}Ca_{0.1}Ba_{2}Cu_3O_{7}} reveals two distinct magnetic resonant modes in the superconducting state. The modes differ in their symmetry with respect to exchange between adjacent copper oxide layers. Counterparts of the mode with odd symmetry, but not the one with even symmetry, had been observed before at lower doping levels. The observation of the even mode resolves a long-standing puzzle, and the spectral weight ratio of both modes yields an estimate of the onset of particle-hole spin-flip excitations.Comment: Submitted to PR

    Resonant magnetic excitations at high energy in superconducting YBa2Cu3O6.85\bf YBa_2Cu_3O_{6.85}

    Full text link
    A detailed inelastic neutron scattering study of the high temperature superconductor YBa2Cu3O6.85\rm YBa_2Cu_3O_{6.85} provides evidence of new resonant magnetic features, in addition to the well known resonant mode at 41 meV: (i) a commensurate magnetic resonance peak at 53 meV with an even symmetry under exchange of two adjacent CuO2\rm CuO_2 layers; and (ii) high energy incommensurate resonant spin excitations whose spectral weight is around 54 meV. The locus and the spectral weight of these modes can be understood by considering the momentum shape of the electron-hole spin-flip continuum of d-wave superconductors. This provides new insight into the interplay between collective spin excitations and the continuum of electron-hole excitations.Comment: 5 figure

    Doping Dependence of Bilayer Resonant Spin Excitations in (Y,Ca)Ba2Cu3O6+x\bf (Y,Ca)Ba_2Cu_3O_{6+x}

    Full text link
    Resonant magnetic modes with odd and even symmetries were studied by inelastic neutron scattering experiments in the bilayer high-TcT_c superconductor Y1xCaxBa2Cu3O6+y\rm Y_{1-x}Ca_{x}Ba_2Cu_3O_{6+y} over a wide doping range. The threshold of the spin excitation continuum in the superconducting state, deduced from the energies and spectral weights of both modes, is compared with the superconducting d-wave gap, measured on the same samples by electronic Raman scattering in the B1gB_{1g} symmetry. Above a critical doping level of δ0.19\delta \simeq 0.19, both mode energies and the continuum threshold coincide. We find a simple scaling relationship between the characteristic energies and spectral weights of both modes, which indicates that the resonant modes are bound states in the superconducting energy gap, as predicted by the spin-exciton model of the resonant mode.Comment: 4 figure

    Comment on ``Relativistic kinetic equations for electromagnetic, scalar and pseudoscalar interactions''

    Get PDF
    It is found that the extra quantum constraints to the spinor components of the equal-time Wigner function given in a recent paper by Zhuang and Heinz should vanish identically. We point out here the origin of the error and give an interpretation of the result. However, the principal idea of obtaining a complete equal-time transport theory by energy averaging the covariant theory remains valid. The classical transport equation for the spin density is also found to be incorrect. We give here the correct form of that equation and discuss briefly its structure.Comment: 5 pages LaTe

    Relativistic and Radiative Corrections to the Mollow Spectrum

    Get PDF
    The incoherent, inelastic part of the resonance fluorescence spectrum of a laser-driven atom is known as the Mollow spectrum [B. R. Mollow, Phys. Rev. 188, 1969 (1969)]. Starting from this level of description, we discuss theoretical foundations of high-precision spectroscopy using the resonance fluorescence light of strongly laser-driven atoms. Specifically, we evaluate the leading relativistic and radiative corrections to the Mollow spectrum, up to the relative orders of (Z alpha)^2 and alpha(Z alpha)^2, respectively, and Bloch-Siegert shifts as well as stimulated radiative corrections involving off-resonant virtual states. Complete results are provided for the hydrogen 1S-2P_{1/2} and 1S-2P_{3/2} transitions; these include all relevant correction terms up to the specified order of approximation and could directly be compared to experimental data. As an application, the outcome of such experiments would allow for a sensitive test of the validity of the dressed-state basis as the natural description of the combined atom-laser system.Comment: 20 pages, 1 figure; RevTe

    Relativistic Kinetic Equations for Electromagnetic, Scalar and Pseudoscalar Interactions

    Get PDF
    We derive the kinetic equations for both the covariant and equal-time Wigner functions of Dirac particles with electromagnetic, scalar and pseudoscalar interactions. We emphasize the constraint equations for the spinor components in the equal-time formulation.Comment: 12 pages, no figures, revte
    corecore