16,312 research outputs found
Phonon-assisted decoherence in the production of polarization-entangled photons in a single semiconductor quantum dot
We theoretically investigate the production of polarization-entangled photons
through the biexciton cascade decay in a single semiconductor quantum dot. In
the intermediate state the entanglement is encoded in the polarizations of the
first emitted photon and the exciton, where the exciton state can be
effectively ``measured'' by the solid state environment through the formation
of a lattice distortion. We show that the resulting loss of entanglement
becomes drastically enhanced if the phonons contributing to the lattice
distortion are subject to elastic scatterings at the device boundaries, which
might constitute a serious limitation for quantum-dot based entangled-photon
devices.Comment: 4 pages, 3 figure, to appear in Physical Review Letter
Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering
We present a detailed temperature dependent Raman light scattering study of
optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K),
Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting
BaFe{2}As{2} single crystals. In all samples we observe a strong continuous
narrowing of the Raman-active Fe and As vibrations upon cooling below the
spin-density-wave transition Ts. We attribute this effect to the opening of the
spin-density-wave gap. The electron-phonon linewidths inferred from these data
greatly exceed the predictions of ab-initio density functional calculations
without spin polarization, which may imply that local magnetic moments survive
well above Ts. A first-order structural transition accompanying the
spin-density-wave transition induces discontinuous jumps in the phonon
frequencies. These anomalies are increasingly suppressed for higher potassium
concentrations. We also observe subtle phonon anomalies at the superconducting
transition temperature Tc, with a behavior qualitatively similar to that in the
cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio
Open Space – a collaborative process for facilitating Tourism IT partnerships
The success of IT projects depends on the success of the partnerships on which they are based. However past research by the author has identified a significant rate of failure in these partnerships, predominantly due to an overly technical mindset, leading to the question: “how do we ensure that, as technological solutions are implemented within tourism, due consideration is given to human-centred issues?” The tourism partnership literature is explored for additional insights revealing that issues connected with power, participation and normative positions play a major role. The method, Open Space, is investigated for its ability to engage stakeholders in free and open debate. This paper reports on a one-day Open Space event sponsored by two major intermediaries in the UK travel industry who wanted to consult their business partners. Both the running of the event and its results reveal how Open Space has the potential to address some of the weaknesses associated with tourism partnerships
A new non-perturbative approach to Quantum Brownian Motion
Starting from the Caldeira-Leggett (CL) model, we derive the equation
describing the Quantum Brownian motion, which has been originally proposed by
Dekker purely from phenomenological basis containing extra anomalous diffusion
terms. Explicit analytical expressions for the temperature dependence of the
diffusion constants are derived. At high temperatures, additional momentum
diffusion terms are suppressed and classical Langivin equation can be recovered
and at the same time positivity of the density matrix(DM) is satisfied. At low
temperatures, the diffusion constants have a finite positive value, however,
below a certain critical temperature, the Master Equation(ME) does not satisfy
the positivity condition as proposed by Dekker.Comment: 5 page
Cyclic mutually unbiased bases, Fibonacci polynomials and Wiedemann's conjecture
We relate the construction of a complete set of cyclic mutually unbiased
bases, i. e., mutually unbiased bases generated by a single unitary operator,
in power-of-two dimensions to the problem of finding a symmetric matrix over
F_2 with an irreducible characteristic polynomial that has a given Fibonacci
index. For dimensions of the form 2^(2^k) we present a solution that shows an
analogy to an open conjecture of Wiedemann in finite field theory. Finally, we
discuss the equivalence of mutually unbiased bases.Comment: 11 pages, added chapter on equivalenc
Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves.
Transgene introgression is a major concern associated with transgenic plant-based vaccines. Agroinfiltration can be used to selectively transform nonreproductive organs and avoid introgression. Here, we introduce a new vaccine modality in which Staphylococcal enterotoxin B (SEB) genes are agroinfiltrated into radishes (Raphanw sativus L.), resulting in transient expression and accumulation of SEB in planta. This approach can simultaneously express multiple antigens in a single leaf. Furthermore, the potential of high-throughput vaccine production was demonstrated by simultaneously agroinfiltrating multiple radish leaves using a multichannel pipette. The expression of SEB was detectable in two leaf cell types (epidermal and guard cells) in agroinfiltrated leaves. ICR mice intranasally immunized with homogenized leaves agroinfiltrated with SEB elicited detectable antibody to SEB and displayed protection against SEB-induced interferon-gamma (IFN-Îł) production. The concept of encapsulating antigens in leaves rather than purifying them for immunization may facilitate rapid vaccine production during an epidemic disease
Preliminary catalog of pictures taken on the lunar surface during the Apollo 15 mission
Catalog of all pictures taken from lunar module or lunar surface during Apollo 15 missio
Spin flip from dark to bright states in InP quantum dots
We report measurements of the time for spin flip from dark (non-light
emitting) exciton states in quantum dots to bright (light emitting) exciton
states in InP quantum dots. Dark excitons are created by two-photon excitation
by an ultrafast laser. The time for spin flip between dark and bright states is
found to be approximately 200 ps, independent of density and temperature below
70 K. This is much shorter than observed in other quantum dot systems. The rate
of decay of the luminescence intensity, approximately 300 ps, is not simply
equal to the radiative decay rate from the bright states, because the rate of
decay is limited by the rate of conversion from dark excitons into bright
excitons. The dependence of the luminescence decay time on the spin flip time
is a general effect that applies to many experiments.Comment: 3 figure
Momentum dependence of orbital excitations in Mott-insulating titanates
High-resolution resonant inelastic x-ray scattering has been used to
determine the momentum dependence of orbital excitations in Mott-insulating
LaTiO and YTiO over a wide range of the Brillouin zone. The data are
compared to calculations in the framework of lattice-driven and
superexchange-driven orbital ordering models. A superexchange model in which
the experimentally observed modes are attributed to two-orbiton excitations
yields the best description of the data.Comment: to appear in PR
- …