30 research outputs found

    Lightwave-controlled electron dynamics in graphene

    No full text
    We demonstrate that currents induced in graphene by ultrashort laser pulses are sensitive to the exact shape of the electric-field waveform. By increasing the field strength, we found a transition of the light–matter interaction from the weak-field to the strong-field regime at around 2 V/nm, where intraband dynamics influence interband transitions. In this strong-field regime, the light-matter interaction can be described by the wavenumber trajectories of electrons in the reciprocal space. For linearly polarized light the electron dynamics are governed by repeated sub-optical-cycle Landau-Zener transitions between the valence- and conduction band, resulting in Landau-Zener-Stuckelberg interference, whereas for circular polarized light this interference is supressed

    Lightwave-controlled electron dynamics in graphene

    Get PDF
    We demonstrate that currents induced in graphene by ultrashort laser pulses are sensitive to the exact shape of the electric-field waveform. By increasing the field strength, we found a transition of the light–matter interaction from the weak-field to the strong-field regime at around 2 V/nm, where intraband dynamics influence interband transitions. In this strong-field regime, the light-matter interaction can be described by the wavenumber trajectories of electrons in the reciprocal space. For linearly polarized light the electron dynamics are governed by repeated sub-optical-cycle Landau-Zener transitions between the valence- and conduction band, resulting in Landau-Zener-Stuckelberg interference, whereas for circular polarized light this interference is supressed

    Single-Molecule Junctions with Epitaxial Graphene Nanoelectrodes

    No full text
    On the way to ultraflat single-molecule junctions with transparent electrodes, we present a fabrication scheme based on epitaxial graphene nanoelectrodes. As a suitable molecule, we identified a molecular wire with fullerene anchor groups. With these two components, stable electrical characteristics could be recorded. Electrical measurements show that single-molecule junctions with graphene and with gold electrodes display a striking agreement. This motivated a hypothesis that the differential conductance spectra are rather insensitive to the electrode material. It is further corroborated by the assignment of asymmetries and spectral features to internal molecular degrees of freedom. The demonstrated open-access graphene electrodes and the electrode-insensitive molecules provide a model system that will allow for a thorough investigation of an individual single-molecule contact with additional probes

    Gateless patterning of epitaxial graphene by local intercalation

    No full text
    We present a technique to pattern the charge density of a large-area epitaxial graphene sheet locally without using metallic gates. Instead, local intercalation of the graphene–substrate interface can selectively be established in the vicinity of graphene edges or predefined voids. It provides changes of the work function of several hundred meV, corresponding to a conversion from n-type to p-type charge carriers. This assignment is supported by photoelectron spectroscopy, scanning tunneling microscopy, scanning electron microscopy and Hall effect measurements. The technique introduces materials contrast to a graphene sheet in a variety of geometries and thus allows for novel experiments and novel functionalities
    corecore