101 research outputs found

    Differential Roles of Tumor Necrosis Factor Ligand Superfamily Members as Biomarkers in Pancreatic Cancer

    Get PDF
    The tumor necrosis factor⁻related weak inducer of apoptosis (TWEAK) belongs to the tumor necrosis factor ligand superfamily, which was shown to play an important role in inflammatory and malignant gastrointestinal diseases, including colitis or colorectal cancer. However, in contrast to other members of the TNF ligand superfamily, its role as a biomarker in pancreatic cancer is currently unknown. We analyzed serum levels of A proliferation-inducing ligand (APRIL) and TWEAK in 134 patients with pancreatic cancer. Results were compared with 50 healthy controls and correlated with clinical data. Intratumoral expression of APRIL and TWEAK in pancreatic cancer was analysed using the datasets made available by the TCGA-LIHC project. APRIL serum levels were significantly elevated in patients with pancreatic cancer compared to healthy controls, which is in line with previous findings. Notably, the diagnostic accuracy of circulating APRIL levels was similar to CA19-9, an established tumor marker for pancreatic cancer. In contrast, serum concentrations of TWEAK were decreased in pancreatic cancer patients. Interestingly, no differences in TWEAK concentrations became apparent between different clinical subgroups of pancreatic cancer. Moreover, within our cohort of patients, TWEAK levels did not correlate with the patients' prognosis and the diagnostic as well as prognostic potential of TWEAK was lower than CA 19-9, when analyzed in this setting. Finally, using data from the TCGA-LIHC project, we demonstrate that expression levels of TWEAK and APRIL represent prognostic markers for patients' survival according to Kaplan-Meier curve analyses. TWEAK and APRIL serum concentrations are regulated differently in patients with pancreatic cancer, highlighting diverse roles of variant TNF ligands in this type of cancer

    Triggering MSR1 promotes JNK-mediated inflammation in IL-4 activated macrophages

    Get PDF
    Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL-4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL-4-activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL-4-activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti-inflammatory to a pro-inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization

    Anthropogenic organic micro-pollutants and pathogens in the urban water cycle: assessment, barriers and risk communication (ASKURIS)

    Get PDF
    In urban areas, water often flows along a partially closed water cycle in which treated municipal wastewater is discharged into surface waters which are one source of raw waters used for drinking water supply. A number of organic micro-pollutants (OMP) can be found in different water compartments. In the near future, climatic and demographic changes will probably contribute to an increase of OMP and antibiotic-resistant pathogens in aquatic ecosystems. The occurrence of OMP, possible adverse effects on aquatic organisms and human health and the public perception must be carefully assessed to properly manage and communicate potentially associated risks and to implement appropriate advanced treatment options at the optimum location within the water cycle. Therefore, the interdisciplinary research project ASKURIS focuses on identification and quantification, toxicological assessment and removal of organic micro-pollutants and antibiotic-resistant pathogens in the Berlin water cycle, life cycle-based economic and environmental assessment, public perception and management of potential risks

    Feasibility and Efficacy of Adjuvant Chemotherapy With Gemcitabine After Liver Transplantation for Perihilar Cholangiocarcinoma: A Multi-Center, Randomized, Controlled Trial (pro-duct001)

    Get PDF
    Background Liver transplantation (LT) is considered a therapeutic option for unresectable perihilar cholangiocarcinoma (PHC) within defined criteria. It remains uncertain whether patients can safely receive adjuvant chemotherapy after LT. Methods We performed a prospective, multi-center, randomized, non-blinded two-arm trial (pro-duct001). Patients after LT for unresectable PHC within defined criteria were randomized to adjuvant gemcitabine (LT-Gem group) and LT alone (LT alone group). The primary objective was to investigate if adjuvant chemotherapy is feasible in ≄ 85% of patients after LT. The primary endpoint was the percentage of patients completing the 24 weeks course of adjuvant chemotherapy. Secondary endpoints included overall survival (OS) and disease-free (DFS), and complication rates. Results Twelve patients underwent LT for PHC, of which six (50%) were eligible for randomization (LT-Gem: three patients, LT alone: three patients). Two out of three patients discontinued adjuvant chemotherapy after LT due to intolerance. The study was prematurely terminated due to slow enrollment. One patient with PHC had underlying primary sclerosing cholangitis (PSC). Tumor-free margins could be achieved in all patients. In both the LT-Gem and the LT alone group, the cumulative 1-, 3-, and 5-year OS and DFS rates were 100%, 100%, 67%, and 100%, 67% and 67%, respectively. Conclusions This prospective, multi-center study was prematurely terminated due to slow enrollment and a statement on the defined endpoints cannot be made. Nevertheless, long-term survival data are consistent with available retrospective data and confirm defined criteria for LT. Since more evidence of LT per se in unresectable PHC is urgently needed, a prospective, non-randomized follow-up study (pro-duct002) has since been launched

    Kinetics of maternal immunity against rabies in fox cubs (Vulpes vulpes)

    Get PDF
    BACKGROUND: In previous experiments, it was demonstrated that maternal antibodies (maAb) against rabies in foxes (Vulpes vulpes) were transferred from the vixen to her offspring. However, data was lacking from cubs during the first three weeks post partum. Therefore, this complementary study was initiated. METHODS: Blood samples (n = 281) were collected from 64 cubs (3 to 43 days old) whelped by 19 rabies-immune captive-bred vixens. Sera was collected up to six times from each cub. The samples were analysed by a fluorescence focus inhibition technique (RFFIT), and antibody titres (nAb) were expressed in IU/ml. The obtained data was pooled with previous data sets. Subsequently, a total of 499 serum samples from 249 cubs whelped by 54 rabies-immune vixens were fitted to a non-linear regression model. RESULTS: The disappearance rate of maAb was independent of the vixens' nAb-titre. The maAb-titre of the cubs decreased exponentially with age and the half-life of the maAb was estimated to be 9.34 days. However, maAb of offspring whelped by vixens with high nAb-titres can be detected for longer by RFFIT than that of offspring whelped by vixens with relatively low nAb-titres. At a mean critical age of about 23 days post partum, maAb could no longer be distinguished from unspecific reactions in RFFIT depending on the amount of maAb transferred by the mother. CONCLUSIONS: The amount of maAb cubs receive is directly proportional to the titre of the vixen and decreases exponentially with age below detectable levels in seroneutralisation tests at a relatively early age

    A reduced population of CD103+CD11b+ dendritic cells has a limited impact on oral Salmonella infection

    No full text
    CD103+CD11b+ dendritic cells (DC) are the major migratory DC subset in the small intestine lamina propria (siLP) and their survival is dependent on the transcription factor interferon regulatory factor 4 (IRF4). Mice with a DC-specific deletion of irf4 (CD11c-cre.Irf4 mice) have reduced mucosal CD103+CD11b+ DC and altered T cell differentiation to protein antigen. The influence of CD103+CD11b+ DC on oral infection with the gastrointestinal pathogen Salmonella, however, is poorly understood and is investigated here. We show that, despite being infected with Salmonella, CD11c-cre.Irf4 mice (called Cre+ mice) conserve the reduction in CD103+CD11b+ DC observed in naive Cre+ mice, particularly in the mesenteric lymph nodes (MLN) but also in the siLP at day 3 post infection. Moreover, Salmonella-infected Cre+ mice have a similar bacterial burden in intestinal tissues (siLP, MLN and Peyer's patches) as well as the spleen compared to infected Cre- controls. The T cell compartment, including the frequency of IFN-Îł and IL-17-producing T cells, is not altered in intestinal tissues of Salmonella-infected Cre+ mice relative to infected Cre- controls. In addition, no difference between infected Cre+ and Cre- mice was observed in either the concentration of IL-6 or IL-17 in whole tissue lysates of siLP, MLN or Peyer's patches or in the serum concentration of Salmonella-specific IgG and IgM. Overall the data suggest that the reduction of CD103+CD11b+ DC in Cre+ mice has little if any impact on Salmonella burden in infected tissues or eliciting effector functions important in host survival at later stages of the infection
    • 

    corecore