28 research outputs found

    Evaluation of thunderstorm predictors in Finland from ECMWF reanalyses and lightning location data

    Get PDF
    While numerical weather forecasts have improved dramatically in recent decades, forecasting severe weather events remains a great challenge due to models being unable to resolve convection explicitly. Forecasters commonly utilize large-scale convective parameters derived from atmospheric soundings to assess whether the atmosphere has the potential to develop convective storms. These parameters are able to describe the environments in which thunderstorms occur but relate to actual thunderstorm events only probabilistically. Roine (2001) used atmospheric soundings and thunderstorm observations to assess which from a variety of stability indices were most successful in predicting thunderstorms in Finland, and found that Surface Lifted Index, CAPE and the Showalter index were most skillful based on the data set in question. This study aims to extend the assessment of thunderstorm predictors to atmospheric reanalyses, by utilising model pseudo-soundings. Reanalyses such as ERA-Interim use sophisticated data assimilation schemes to reconstruct past atmospheric conditions from historical observational data. In addition to a large sample size, this approach enables examining the use of other large-scale model parameters, which are hypothesized to be associated with convective initiation, as supplemental forecast parameters. Using lightning location data and ERA-Interim reanalysis fields for Finnish summers between 2002 and 2013, it is found that the Lifted Index (LI) based on the most unstable parcel in the lowest 300 hPa has the highest forecast skill among traditional stability indices. By combining this index with the dew point depression at 700 hPa and low-level vertical shear, its performance can be further slightly increased. Moreover, vertically integrated mass flux convergence between the surface and 500 hPa calculated from the ERA-I convergence seems to have high association with thunderstorm occurrence when used as a supplementary parameter. Finally, artificial neural networks (ANN) were developed for predicting thunderstorm occurrence, and their forecast skill compared to that of stability indices. The best ANN found, utilizing 11 parameters as input, clearly outperformed the best stability indices in a skill score test; achieving a True Skill Score of 0.69 compared to 0.61 with the most unstable Lifted Index. The results suggest that ANNs, due to their inherent nonlinearity, represent a promising tool for forecasting of deep, moist convection

    High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    Get PDF
    This report describes the combined use of an enzyme-based glucose release system (EnBase®) and high-aeration shake flask (Ultra Yield Flask™). The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved

    A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cultivations for recombinant protein production in shake flasks should provide high cell densities, high protein productivity per cell and good protein quality. The methods described in laboratory handbooks often fail to reach these goals due to oxygen depletion, lack of pH control and the necessity to use low induction cell densities. In this article we describe the impact of a novel enzymatically controlled fed-batch cultivation technology on recombinant protein production in <it>Escherichia coli </it>in simple shaken cultures.</p> <p>Results</p> <p>The enzymatic glucose release system together with a well-balanced combination of mineral salts and complex medium additives provided high cell densities, high protein yields and a considerably improved proportion of soluble proteins in harvested cells. The cultivation method consists of three steps: 1) controlled growth by glucose-limited fed-batch to OD<sub>600 </sub>~10, 2) addition of growth boosters together with an inducer providing efficient protein synthesis within a 3 to 6 hours period, and 3) a slow growth period (16 to 21 hours) during which the recombinant protein is slowly synthesized and folded. Cell densities corresponding to 10 to 15 g l<sup>-1 </sup>cell dry weight could be achieved with the developed technique. In comparison to standard cultures in LB, Terrific Broth and mineral salt medium, we typically achieved over 10-fold higher volumetric yields of soluble recombinant proteins.</p> <p>Conclusions</p> <p>We have demonstrated that by applying the novel EnBase<sup>ÂŽ </sup>Flo cultivation system in shaken cultures high cell densities can be obtained without impairing the productivity per cell. Especially the yield of soluble (correctly folded) proteins was significantly improved in comparison to commonly used LB, Terrific Broth or mineral salt media. This improvement is thought to result from a well controlled physiological state during the whole process. The higher volumetric yields enable the use of lower culture volumes and can thus significantly reduce the amount of time and effort needed for downstream processing or process optimization. We claim that the new cultivation system is widely applicable and, as it is very simple to apply, could widely replace standard shake flask approaches.</p

    Pipeline for Large-Scale Microdroplet Bisulfite PCR-Based Sequencing Allows the Tracking of Hepitype Evolution in Tumors

    Get PDF
    Cytosine methylation provides an epigenetic level of cellular plasticity that is important for development, differentiation and cancerogenesis. We adopted microdroplet PCR to bisulfite treated target DNA in combination with second generation sequencing to simultaneously assess DNA sequence and methylation. We show measurement of methylation status in a wide range of target sequences (total 34 kb) with an average coverage of 95% (median 100%) and good correlation to the opposite strand (rho = 0.96) and to pyrosequencing (rho = 0.87). Data from lymphoma and colorectal cancer samples for SNRPN (imprinted gene), FGF6 (demethylated in the cancer samples) and HS3ST2 (methylated in the cancer samples) serve as a proof of principle showing the integration of SNP data and phased DNA-methylation information into “hepitypes” and thus the analysis of DNA methylation phylogeny in the somatic evolution of cancer
    corecore