620 research outputs found

    Noise analysis of single-qumode Gaussian operations using continuous-variable cluster states

    Get PDF
    We consider measurement-based quantum computation that uses scalable continuous-variable cluster states with a one-dimensional topology. The physical resource, known here as the dual-rail quantum wire, can be generated using temporally multiplexed offline squeezing and linear optics or by using a single optical parametric oscillator. We focus on an important class of quantum gates, specifically Gaussian unitaries that act on single modes, which gives universal quantum computation when supplemented with multi-mode operations and photon-counting measurements. The dual-rail wire supports two routes for applying single-qumode Gaussian unitaries: the first is to use traditional one-dimensional quantum-wire cluster-state measurement protocols. The second takes advantage of the dual-rail quantum wire in order to apply unitaries by measuring pairs of qumodes called macronodes. We analyze and compare these methods in terms of the suitability for implementing single-qumode Gaussian measurement-based quantum computation.Comment: 25 pages, 9 figures, more accessible to general audienc

    Quantitative lower bounds for the full Boltzmann equation, Part I: Periodic boundary conditions

    Full text link
    We prove the appearance of an explicit lower bound on the solution to the full Boltzmann equation in the torus for a broad family of collision kernels including in particular long-range interaction models, under the assumption of some uniform bounds on some hydrodynamic quantities. This lower bound is independent of time and space. When the collision kernel satisfies Grad's cutoff assumption, the lower bound is a global Maxwellian and its asymptotic behavior in velocity is optimal, whereas for non-cutoff collision kernels the lower bound we obtain decreases exponentially but faster than the Maxwellian. Our results cover solutions constructed in a spatially homogeneous setting, as well as small-time or close-to-equilibrium solutions to the full Boltzmann equation in the torus. The constants are explicit and depend on the a priori bounds on the solution.Comment: 37 page

    Hypernuclear spectroscopy with K^- at rest on 7^7Li, 9^9Be, 13^{13}C and 16^{16}O

    Full text link
    The FINUDA experiment collected data to study the production of hypernuclei on different nuclear targets. The hypernucleus formation occurred through the strangeness-exchange reaction K^-_{stop} + \; ^AZ \rightarrow \; ^A_{\Lambda}Z + \pi^-. From the analysis of the momentum of the emerging π\pi^-, binding energies and formation probabilities of Λ7^7_{\Lambda}Li, Λ9^9_{\Lambda}Be, Λ13^{13}_{\Lambda}C and Λ16^{16}_{\Lambda}O have been measured and are here presented. The behavior of the formation probability as a function of the atomic mass number A is also discussed.Comment: Accepted for publication in PL

    Bipartite Entanglement in Continuous-Variable Cluster States

    Full text link
    We present a study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous-variable quantum computing. A central aim is to compare mathematically-idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations which are experimentally accessible. Adopting widely-used definitions, we first review the key concepts, by analysing a process of teleportation along a continuous-variable quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest M et al., Phys. Rev. Lett. 97 150504 (2006), adapting their definition to the continuous-variable context. Finally we add the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of continuous-variable analogues of measurement-based quantum computation.Comment: 22 page

    Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section

    Full text link
    This paper focuses on the study of existence and uniqueness of distributional and classical solutions to the Cauchy Boltzmann problem for the soft potential case assuming Sn1S^{n-1} integrability of the angular part of the collision kernel (Grad cut-off assumption). For this purpose we revisit the Kaniel--Shinbrot iteration technique to present an elementary proof of existence and uniqueness results that includes large data near a local Maxwellian regime with possibly infinite initial mass. We study the propagation of regularity using a recent estimate for the positive collision operator given in [3], by E. Carneiro and the authors, that permits to study such propagation without additional conditions on the collision kernel. Finally, an LpL^{p}-stability result (with 1p1\leq p\leq\infty) is presented assuming the aforementioned condition.Comment: 19 page

    Branching Ratio and CP Violation of B to pi pi Decays in Perturbative QCD Approach

    Full text link
    We calculate the branching ratios and CP asymmetries for B^0 to pi^+pi^-, B^+ to pi^+pi^0 and B^0 to pi^0pi^0 decays, in a perturbative QCD approach. In this approach, we calculate non-factorizable and annihilation type contributions, in addition to the usual factorizable contributions. We found that the annihilation diagram contributions are not very small as previous argument. Our result is in agreement with the measured branching ratio of B to pi^+pi^- by CLEO collaboration. With a non-negligible contribution from annihilation diagrams and a large strong phase, we predict a large direct CP asymmetry in B^0 to pi^+pi^-, and pi^0pi^0, which can be tested by the current running B factories.Comment: Latex, 28 pages including 11 figures; added contents and figures, corrected typo

    Study of pure annihilation type decays BDsKB \to D_s^{*} K

    Full text link
    In this work, we calculate the rare decays B0DsK+B^0 \to D_s^{*-} K^+ and B+Ds+Kˉ0B^+ \to D_s^{*+} \bar{K}^0 in perturbative QCD approach with Sudakov resummation. We give the branching ratio of 10510^{-5} for B0DsK+B^0 \to D_s^{*-}K^+, which will be tested soon in BB factories. The decay B+Ds+Kˉ0B^+ \to D_s^{*+} \bar{K}^0 has a very small branching ratio at O(108){\cal O}(10^{-8}), due to the suppression from CKM matrix elements VubVcd|V_{ub}^* V_{cd}|. It may be sensitive to new physics contributions.Comment: 14 pages, 1 figur
    corecore