11 research outputs found

    The Status of Eelgrass, Zostera marina, as Bay Scallop Habitat: Consequences for the Fishery in the Western Atlantic

    Get PDF
    Zostera marina is a member of a widely distributed genus of seagrasses, all commonly called eelgrass. The reported distribution of eelgrass along the east coast of the United States is from Maine to North Carolina. Eelgrass inhabits a variety of coastal habitats, due in part to its ability to tolerate a wide range of environmental parameters. Eelgrass meadows provide habitat, nurseries, and feeding grounds for a number of commercially and ecologically important species, including the bay scallop, Argopecten irradians. In the early 1930’s, a marine event, termed the “wasting disease,” was responsible for catastrophic declines in eelgrass beds of the coastal waters of North America and Europe, with the virtual elimination of Z. marina meadows in the Atlantic basin. Following eelgrass declines, disastrous losses were documented for bay scallop populations, evidence of the importance of eelgrass in supporting healthy scallop stocks. Today, increased turbidity arising from point and non-point source nutrient loading and sediment runoff are the primary threats to eelgrass along the Atlantic coast and, along with recruitment limitation, are likely reasons for the lack of recovery by eelgrass to pre-1930’s levels. Eelgrass is at a historical low for most of the western Atlantic with uncertain prospects for systematic improvement. However, of all the North American seagrasses, eelgrass has a growth rate and strategy that makes it especially conducive to restoration and several states maintain ongoing mapping, monitoring, and restoration programs to enhance and improve this critical resource. The lack of eelgrass recovery in some areas, coupled with increasing anthropogenic impacts to seagrasses over the last century and heavy fishing pressure on scallops which naturally have erratic annual quantities, all point to a fishery with profound challenges for survival

    Preliminary comparison of natural versus model-predicted recovery of vessel-generated seagrass injuries in Florida Keys National Marine Sanctuary

    Get PDF
    Each year, more than 500 motorized vessel groundings cause widespread damage to seagrasses in Florida Keys National Marine Sanctuary (FKNMS). Under Section 312 of the National Marine Sanctuaries Act (NMSA), any party responsible for the loss, injury, or destruction of any Sanctuary resource, including seagrass, is liable to the United States for response costs and resulting damages. As part of the damage assessment process, a cellular automata model is utilized to forecast seagrass recovery rates. Field validation of these forecasts was accomplished by comparing model-predicted percent recovery to that which was observed to be occurring naturally for 30 documented vessel grounding sites. Model recovery forecasts for both Thalassia testudinum and Syringodium filiforme exceeded natural recovery estimates for 93.1% and 89.5% of the sites, respectively. For Halodule wrightii, the number of over- and under-predictions by the model was similar. However, where under-estimation occurred, it was often severe, reflecting the well-known extraordinary growth potential of this opportunistic species. These preliminary findings indicate that the recovery model is consistently generous to Responsible Parties in that the model forecasts a much faster recovery than was observed to occur naturally, particularly for T. testudinum, the dominant seagrass species in the region and the species most often affected. Environmental setting (i.e., location, wave exposure) influences local seagrass landscape pattern and may also play a role in the recovery dynamics for a particular injury site. An examination of the relationship between selected environmental factors and injury recovery dynamics is currently underway. (PDF file contains 20 pages.

    Lobster trap debris in the Florida Keys National Marine Sanctuary: distribution, abundance, density, and patterns of accumulation

    Get PDF
    The fishery for spiny lobster Panulirus argus in the Florida Keys National Marine Sanctuary is well chronicled, but little information is available on the prevalence of lost or abandoned lobster traps. In 2007, towed-diver surveys were used to identify and count pieces of trap debris and any other marine debris encountered. Trap debris density (debris incidences/ha) in historic trap-use zones and in representative benthic habitats was estimated. Trap debris was not proportionally distributed with fishing effort. Coral habitats had the greatest density of trap debris despite trap fishers’ reported avoidance of coral reefs while fishing. The accumulation of trap debris on coral emphasizes the role of wind in redistributing traps and trap debris in the sanctuary. We estimated that 85,548 ± 23,387 (mean ± SD) ghost traps and 1,056,127 ± 124,919 nonfishing traps or remnants of traps were present in the study area. Given the large numbers of traps in the fishery and the lack of effective measures for managing and controlling the loss of gear, the generation of trap debris will likely continue in proportion to the number of traps deployed in the fishery. Focused removal of submerged trap debris from especially vulnerable habitats such as reefs and hardbottom, where trap debris density is high, would mitigate key habitat issues but would not address ghost fishing or the cost of lost gear

    Microplastics in Invasive Freshwater Mussels (Dreissena sp.): Spatiotemporal Variation and Occurrence With Chemical Contaminants

    Get PDF
    Invasive zebra and quagga mussels (Dreissena spp.) in the Great Lakes of North America are biomonitors for chemical contaminants, but are also exposed to microplastics (\u3c5 mm). Little research has examined in situ microplastic ingestion by dreissenid mussels, or the relationship between microplastics and chemical contaminants. We measured microplastics and chemical contaminants in mussel tissue from Milwaukee Harbor (Lake Michigan, United States) harvested from reference locations and sites influenced by wastewater effluent and urban river discharge. Mussels were deployed in cages in the summer of 2018, retrieved after 30 and 60 days, sorted by size class, and analyzed for microplastics and body burdens of three classes of contaminants: alkylphenols, polyaromatic hydrocarbons, and petroleum biomarkers. Microplastics in mussels were higher in the largest mussels at the wastewater-adjacent site after 30 days deployment. However, there was no distinction among sites for microplastics in smaller mussels, and no differences among sites after 60 days of deployment. Microplastics and chemical contaminants in mussels were not correlated. Microplastics have a diversity of intrinsic and extrinsic factors which influence their ingestion, retention, and egestion by mussels, and which vary relative to chemicals. While dreissenid mussels may not serve as plastic pollution biomonitors like they can for chemical contaminants, microplastics in dreissenid mussels are widespread, variable, and have unknown effects on physiology, mussel-mediated ecosystem processes, and lake food webs. These data will inform our understanding of the spatial distribution of microplastics in urban freshwaters, the role of dreissenid mussels in plastic budgets, and models for the fate of plastic pollution

    Biogeographic analysis of the Tortugas Ecological Reserve: Examining the refuge effect following reserve establishment

    Get PDF
    Almost 120 days at sea aboard three NOAA research vessels and one fishing vessel over the past three years have supported biogeographic characterization of Tortugas Ecological Reserve (TER). This work initiated measurement of post-implementation effects of TER as a refuge for exploited species. In Tortugas South, seafloor transect surveys were conducted using divers, towed operated vehicles (TOV), remotely operated vehicles (ROV), various sonar platforms, and the Deepworker manned submersible. ARGOS drifter releases, satellite imagery, ichthyoplankton surveys, sea surface temperature, and diver census were combined to elucidate potential dispersal of fish spawning in this environment. Surveys are being compiled into a GIS to allow resource managers to gauge benthic resource status and distribution. Drifter studies have determined that within the ~ 30 days of larval life stage for fishes spawning at Tortugas South, larvae could reach as far downstream as Tampa Bay on the west Florida coast and Cape Canaveral on the east coast. Together with actual fish surveys and water mass delineation, this work demonstrates that the refuge status of this area endows it with tremendous downstream spillover and larval export potential for Florida reef habitats and promotes the maintenance of their fish communities. In Tortugas North, 30 randomly selected, permanent stations were established. Five stations were assigned to each of the following six areas: within Dry Tortugas National Park, falling north of the prevailing currents (Park North); within Dry Tortugas National Park, falling south of the prevailing currents (Park South); within the Ecological Reserve falling north of the prevailing currents (Reserve North); within the Ecological Reserve falling south of the prevailing currents (Reserve South); within areas immediately adjacent to these two strata, falling north of the prevailing currents (Out North); and within areas immediately adjacent to these two strata, falling south of the prevailing currents (Out South). Intensive characterization of these sites was conducted using multiple sonar techniques, TOV, ROV, diver-based digital video collection, diver-based fish census, towed fish capture, sediment particle-size, benthic chlorophyll analyses, and stable isotope analyses of primary producers, fish, and, shellfish. In order to complement and extend information from studies focused on the coral reef, we have targeted the ecotone between the reef and adjacent, non-reef habitats as these areas are well-known in ecology for indicating changes in trophic relationships at the ecosystem scale. Such trophic changes are hypothesized to occur as top-down control of the system grows with protection of piscivorous fishes. Preliminary isotope data, in conjunction with our prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be the source of a significant amount of the primary production ultimately fueling fish production throughout TER and downstream throughout the range of larval fish dispersal. Therefore, the status and influence of the previously neglected, non-reef habitat within the refuge (comprising ~70% of TER) appears to be intimately tied to the health of the coral reef community proper. These data, collected in a biogeographic context, employing an integrated Before-After Control Impact design at multiple spatial scales, leave us poised to document and quantify the postimplementation effects of TER. Combined with the work at Tortugas South, this project represents a multi-disciplinary effort of sometimes disparate disciplines (fishery oceanography, benthic ecology, food web analysis, remote sensing/geography/landscape ecology, and resource management) and approaches (physical, biological, ecological). We expect the continuation of this effort to yield critical information for the management of TER and the evaluation of protected areas as a refuge for exploited species. (PDF contains 32 pages.

    Ongoing monitoring of Tortugas Ecological Reserve: Assessing the consequences of reserve designation

    Get PDF
    Over the past five years, a biogeographic characterization of Tortugas Ecological Reserve(TER) has been carried out to measure the post-implementation effects of TER as a refuge for exploited species. Our results demonstrate that there is substantial microalgal biomass at depths between 10 and 30 m in the soft sediments at the coral reef interface, and that this community may play an important role in the food web supporting reef organisms. In addition, preliminary stable isotope data, in conjunction with prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be an important source of the primary production ultimately fueling fish production throughout TER. The majority of the fish analyzed so far have exhibited a C isotope signature consistent with a food web which relies heavily on benthic primary production. Fish counts indicate a marked increase in the abundance of large fish (>20 cm) within the Reserve relative to the Out and Park strata, across years. Faunal collections from open and protected soft bottom habitat near the northern boundary of Tortugas North strongly suggest that relaxation of trawling pressure has increased benthic biomass and diversity in this area of TER. These data, employing an integrated Before - After Control Impact (BACI) design at multiple spatial scales, will allow us to continue to document and quantify the post-implementation effects of TER. (PDF contains 58 pages

    Prioritizing seagrass restoration sites: study examines predictors of seagrass bed recovery

    Get PDF
    Ecologic researchers are modeling the impact of vessel grounding to seagrass beds using GIS in the Florida Keys National Marine Sanctuary. The surface creation tools in the ArcGIS 3D Analyst extension help assess both the damage and recovery of these seagrass beds
    corecore