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About the Marine Sanctuaries Conservation Series 
 

The National Oceanic and Atmospheric Administration’s National Ocean Service (NOS) administers the 
Office of National Marine Sanctuaries (ONMS).  Its mission is to identify, designate, protect and manage 
the ecological, recreational, research, educational, historical, and aesthetic resources and qualities of nationally 
significant coastal and marine areas.  The existing marine sanctuaries differ widely in their natural and 
historical resources and include nearshore and open ocean areas ranging in size from less than one to over 
5,000 square miles.  Protected habitats include rocky coasts, kelp forests, coral reefs, sea grass beds, estuarine 
habitats, hard and soft bottom habitats, segments of whale migration routes, and shipwrecks. 
 
Because of considerable differences in settings, resources, and threats, each marine sanctuary has a tailored 
management plan.  Conservation, education, research, monitoring and enforcement programs vary accordingly.  
The integration of these programs is fundamental to marine protected area management.  The Marine 
Sanctuaries Conservation Series reflects and supports this integration by providing a forum for publication 
and discussion of the complex issues currently facing the sanctuary system.  Topics of published reports vary 
substantially and may include descriptions of educational programs, discussions on resource management 
issues, and results of scientific research and monitoring projects.  The series facilitates integration of natural 
sciences, socioeconomic and cultural sciences, education, and policy development to accomplish the diverse needs 
of NOAA’s resource protection mandate. 
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ABSTRACT 
 
 

Each year, more than 500 motorized vessel groundings cause widespread damage to 
seagrasses in Florida Keys National Marine Sanctuary (FKNMS).  Under Section 312 of 
the National Marine Sanctuaries Act (NMSA), any party responsible for the loss, injury, 
or destruction of any Sanctuary resource, including seagrass, is liable to the United States 
for response costs and resulting damages.  As part of the damage assessment process, a 
cellular automata model is utilized to forecast seagrass recovery rates.  Field validation of 
these forecasts was accomplished by comparing model-predicted percent recovery to that 
which was observed to be occurring naturally for 30 documented vessel grounding sites.  
Model recovery forecasts for both Thalassia testudinum and Syringodium filiforme 
exceeded natural recovery estimates for 93.1% and 89.5% of the sites, respectively.  For 
Halodule wrightii, the number of over- and under-predictions by the model was similar.  
However, where under-estimation occurred, it was often severe, reflecting the well-
known extraordinary growth potential of this opportunistic species.  These preliminary 
findings indicate that the recovery model is consistently generous to Responsible Parties 
in that the model forecasts a much faster recovery than was observed to occur naturally, 
particularly for T. testudinum, the dominant seagrass species in the region and the species 
most often affected.  Environmental setting (i.e., location, wave exposure) influences 
local seagrass landscape pattern and may also play a role in the recovery dynamics for a 
particular injury site.  An examination of the relationship between selected environmental 
factors and injury recovery dynamics is currently underway. 
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INTRODUCTION 
 

Seagrass beds are an integral component of the south Florida marine ecosystem.  Within 
the boundaries of the  Florida Keys National Marine Sanctuary (FKNMS) nearly 1.4 
million acres of seagrass function as habitat, settlement sites, nurseries, feeding grounds, 
and refuge for a large number of ecologically and commercially important marine 
organisms (Zieman, 1982; Zieman and Zieman, 1989; Fourqurean et al., 2001).  Despite 
the irrefutable significant ecological value of seagrasses, annually more than 500 
motorized vessel groundings cause widespread damage to seagrass habitat in the 
Sanctuary and throughout other regions of Florida (Sargent et al., 1995; Whitfield et al., 
2002; Kirsch et al., 2005; SFNRC 2008).  Given the growing popularity of the Florida 
Keys for marine recreation (SCUBA diving, fishing) and commercial fishing, vessel 
groundings will almost certainly continue to occur.  
 
Vessel groundings are some of the most severe injuries that can occur in seagrass 
meadows (Kenworthy et al. 2002).  A typical grounding results in the formation of at 
least one of four features: 1) propeller scars (shallow, narrow, linear excavated trenches 
caused by the propeller while the vessel is still moving), 2) keel scars (usually a 
depression into the seagrass mat when the keel comes to rest as vessel forward movement 
halts), 3) blowholes (deep, large excavations caused by propeller wash as the vessel 
becomes hard aground or the operator attempts to power off) and, 4) berms (excavated 
material deposited on the outskirts of blowholes).  Grounding events directly remove 
above- and belowground seagrass biomass resulting in features that are highly vulnerable 
to storm events.  For example, Whitfield et al. (2002) reported how storms caused 
expansion of injuries by up to 135% of the original area.   Given the slow recovery rates 
exhibited by the most frequently injured seagrass species (Thalassia testudinum) in the 
FKNMS (2 – 10 years for propeller scars in Thalassia testudinum: Zieman 1976, Durako 
et al. 1992, Dawes et al. 1997, Kenworthy et al., 2002) and the often cumulative nature of 
vessel groundings, these injuries severely alter both short and long-term seagrass 
ecosystem functions (Sargent et al. 1995, Uhrin and Holmquist 2003, SFNRC 2008). 
Moreover, multiple injuries to a seagrass bed create a scenario where the loss of seagrass 
cover can lead to a state change, shifting what was a seagrass bed to a sparse or non-
vegetated state following a storm event (Fonseca and Bell 1998, Fonseca et al. 2000a).   
 
Under Section 312 of the National Marine Sanctuaries Act (NMSA), any person 
responsible for the loss, injury, or destruction of any Sanctuary resource is liable to the 
United States for response costs and resulting damages and restoration.  The two 
governing agencies, the National Oceanic and Atmospheric Administration (NOAA) and 
the Florida Department of Environmental Protection (FDEP), co-operatively conduct 
injury assessments and develop restoration plans for vessel injuries to seagrass resources 
utilizing protocols and analyses established under the auspices of the Mini-312 Program 
(NOAA; Fonseca et al., 2000b; Fonseca et al., 2004; Kirsch et al., 2005).  Field impact 
assessments include site mapping and bathymetric surveys using high resolution 
Differential Global Positioning Systems (DGPS) and fathometers, as well as 
characterization of injured habitat by visual assessment methods (Kirsch et al., 2005).  
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Field data, specifically the spatially articulated injury perimeter measurements, are input 
to a recovery model which uses published data on seagrass growth rates combined with 
injury geometry to compute a recovery trajectory (Fonseca et al., 2004).  Restoration 
plans include recommendations for primary restoration (restoration activities within the 
actual grounding site) and compensatory restoration (off-site restoration activities to 
compensate for lost interim ecological services). The level of primary and compensatory 
restoration is determined through a Habitat Equivalency Analysis (HEA) which 
incorporates the recovery model output and economic discounting (NOAA, 1997; 
Fonseca et al. 2000b).   
 
Given that natural recovery may take place under suitable conditions, the ability to 
forecast whether or not an injury could potentially recover without intervention or with 
minimal restorative action would enable management to focus efforts on those sites 
where recovery is less likely.  The need to validate the model recovery predictions is 
critical.  Prior to this report we had been unable to conduct a comparison of our recovery 
model with what was actually transpiring at the injured sites.  To that aim, we reassessed 
30 Mini-312 grounding incidents where restoration had yet to be implemented. At each of 
the sites we examined the change in area of blowhole features as well as the change in 
percent cover of seagrass within blowholes.   We compared recovery trajectories 
generated from the recovery model to the observed natural recovery at each site to 
validate model performance.   
 

METHODS 
 

Site Selection 
In March 2004, we consulted the NOAA Damage Assessment Center (DAC) database of 
reported seagrass vessel grounding sites in FKNMS and chose a subset of sites where 
restoration had yet to be executed.  The widespread geographic distribution of grounding 
sites in FKNMS made it necessary to limit the number of sites to a manageable subset.  
We considered injury age (e.g. passage of time) to be highly influential in the recovery 
process as it has been shown that seagrasses will grow and re-colonize an area where they 
previously existed given enough time, and barring further disturbance (Thayer et al. 
1994).  Thus, the available sites were initially grouped using the inter-quartile ranges 
(IQR) for injury age, calculated using PROC UNIVARIATE in SAS Version 9.1 (SAS 
Institute, Inc. 2002).  Within each of the four age quartiles (< 1.43 years, 1.43-1.95 years, 
1.96-2.88 years, and 2.89-6.33 years), sites were further categorized according to relative 
wave exposure (RWE).  RWE was determined by applying the Wave Exposure Model 
(WEMo; Malhotra and Fonseca 2007) to each injury for the time period beginning from 
the date of the first injury assessment through present day.  RWE was chosen as an initial 
categorization variable due to its strong link with seagrass landscape pattern (Patriquin 
1975, Fonseca and Bell 1998, Kendrick et al. 2000, Fonseca et al. 2002, Krause-Jensen et 
al. 2003, Frederiksen et al. 2004) and the influence of hydrodynamics in general on 
seagrass recovery (Kirkman 1985, Kendrick et al. 2000, Whitfield et al. 2002).  RWE 
categories were generalized as follows: < 10000, 10001-20000, and > 20000.  The initial 
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categorization of sites in this manner strictly served as a mechanism to achieve a 
representative subset of sites but was not used for statistical analyses  Within each age x 
RWE combination, it was our desire to obtain a minimum of three representative 
grounding sites.  In some instances this was not possible due to the absence or limited 
numbers of sites meeting those criteria.  In the end, a total of 30 sites were selected for 
investigation.   
 

Initial Field Assessments 
The 30 grounding sites had previously been assessed by DAC staff (typically within two 
weeks of the grounding incident) using established, quantitative techniques (Kirsch et al., 
2005). Each grounding site was mapped by physically tracing the outline of the injury 
features using DGPS.  Depending upon the depth of water over the injury features, the 
DGPS unit was either handheld and the outlines traced by walking the injury perimeter or 
mounted on an inflatable boat which was then floated around the perimeter under the 
guidance of a snorkeler.  Injury feature coordinates (WGS84 datum) were downloaded to 
Trimble GPS Pathfinder Office software and then exported to ESRI’s ArcView® 
software for calculation of injury area (square meters) using the UTM83 – Zone 17N 
coordinate system. 
 
Replicate 0.25m2 quadrats were haphazardly tossed into each injury feature and in the 
surrounding undisturbed seagrass meadow and the cover of vegetation was visually 
inspected.  Seagrass, macroalgae, and coral present in the quadrats were identified and 
assigned a cover-abundance scale value: 0 = not present, 0.1 = solitary specimen, 0.5 = 
few specimens (< 5), 1 = numerous but no more than 5% cover, 2 = 5 to 25% cover, 3 = 
26 to 50% cover, 4 = 51 to 75% cover, and 5 = greater than 75% cover.  A minimum of 
three quadrats were sampled from within each injury feature (a function of injury size) 
and a minimum of 10 from the undisturbed reference area taken within 1-3 m of the 
injury features.  Care was taken to collect reference samples from around the entirety of 
the injury perimeter to account for habitat heterogeneity in the reference bed. 
 

Revisit Field Assessments   
During the summer of 2004 and spring of 2005, each of the 30 injury grounding sites 
were revisited and reassessed duplicating the aforementioned DAC protocol.  The time-
lapse between initial assessment and re-assessment resulted in site ages ranging from 
1.43 – 3.46 years.  To quantify seagrass re-colonization (recovery) within blowholes, the 
original blowhole perimeter was uploaded into the DGPS, re-traced, and marked with 
survey flags.  Braun-Blanquet quadrats were then sampled from within the original 
blowhole perimeter utilizing the same level of replication as in the initial field 
assessment.  If there was a change in the perimeter of the original injury feature, a new 
injury outline was mapped by delineating the perimeter of the currently existing bare 
substrate.   
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Natural Recovery Estimates 
From the original Braun-Blanquet cover estimates at each site, the following Density (D) 
statistic was calculated for each blowhole, by seagrass species, and for total seagrass 
present: 
                                  n 
   Di = ∑ Sij / n 
                                             j=1 
where Di = density of species i; j = quadrat number from 1 to n, the total number of 
quadrats sampled per injury feature; and Sij = the Braun-Blanquet score for species i in 
quadrat j (Kenworthy et al., 1993; Fourqurean et al., 2001).  The Density statistic was 
used to calculate percent natural recovery of seagrass for each blowhole feature, by 
seagrass species as follows: 
 
   % Recovery  = (Dic / Dir) x 100 
 
where Dic = density of species i from control samples c taken at the time of injury 
occurrence and  Dir = density of species i from reassessment samples r taken from 
directly within the original injury perimeter.  Here, Dic represents the pre-injury baseline, 
assumed to be static, and thus, the final desired endpoint of restoration.   
 

Model Recovery Estimates 
A cellular automata modeling technique was used to formulate injury recovery 
trajectories for each site (Fonseca et al., 2000b; 2004).  The model used an iterative 
process whereby each iteration of the model represented a time step of one year and 
yielded a grid that continually filled with occupied cells until all cells were designated as 
being occupied.  The percentage of the injury that had recovered and the remaining years 
to complete recovery were calculated at each time step for Thalassia testudinum and 
Syringodium filiforme / Halodule wrightii combined.  Percent recovery was then plotted 
by time in years to derive the recovery horizon for the entire injury.  The resulting 
regression equations were used to calculate the expected percent recovery for each injury 
based upon the actual age of the injury.  We then compared the predicted percent 
recovery to that which was observed to be occurring naturally.  
  

RESULTS 
 

All 30 sites had Thalassia testudinum present in the reference quadrats; however, we 
were unable to run the model for one site, due to discrepancies in the collection of the 
field data, therefore, N = 29.  The model over-predicted T. testudinum recovery for all but 
two sites (93% of the time), with an average over-prediction difference of ~24% (Figure 
1).  
 
Of the 19 sites that had Syringodium filiforme present in the reference seagrass bed, the 
model over-predicted recovery 89.5% of the time (17 of 19 sites) with an average over-
prediction difference of ~73%  (Figure 1). 
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Halodule wrightii was present in reference samples from 11 of the 29 sites.  Of these 11, 
the model over-predicted recovery for 6 sites with an average over-prediction difference 
of 76.4% (Figure 3).  For the remaining five sites where recovery was under-estimated, 
the difference was much more extreme with an average under –prediction difference of 
160% (Figure 1).  

 
 

Figure 1.  Absolute difference between model-predicted and natural percent recovery of selected 
vessel grounding sites in Florida Keys National Marine Sanctuary.  Positive differences indicate 
model over-prediction while negative differences indicate under-prediction. 
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DISCUSSION 
 

To our knowledge, these data represent the first quantitative post-hoc validation of the 
injury recovery model currently employed by NOAA for seagrass injury  
assessment.  These preliminary findings indicate that the recovery model is consistently 
generous to Responsible Parties in that the model forecasts a much faster recovery than 
was observed to occur naturally, especially for T. testudinum and S. filiforme. It was very 
important to document whether T. testudinum was being fairly assessed given that the 
inherently slow growth rate of this species contributes far more heavily to computations 
of lost interim services under HEA (Fonseca et al., 2000b). Therefore, the application of 
the cellular automata model has thus far resulted in over-estimation of the recovery rate 
and under-estimation of lost interim services resulting in lower dollar amounts in claims 
cases against the Responsible Party as well as lowered funds for restoration efforts.  
Fonseca et al. (2004) and Kirsch et al. (2005) suggested that aspects of the model would 
likely lead to over-estimation of recovery because the injured area was considered to be 
fully conducive to recovery (i.e., the sediment was level with the surrounding un-
impacted seagrass; Hammerstrom et al. (2007) demonstrated that as little as 20cm of 
sediment loss could inhibit T. testudinum re-growth).  Another attribute of the modeling 
approach not previously mentioned is that each injury polygon is allowed to recover with 
seagrass at all edges.  In reality, many injuries have blowholes and berms adjacent to 
each other so that no seagrass recovery source is available for long portions of the injury 
edge.  Additionally, the model currently does not consider the recovery of below-ground 
biomass which is often more severe than losses to the above-ground component and 
requires considerably more time to fully recover (Di Carlo and Kenworthy, 2008).    
 
Under-estimates of recovery for H. wrightii tended to be large when they occurred.  This 
is not surprising given the opportunistic nature of this species and its capacity to rapidly 
colonize an area (Fonseca et al., 1987; Gallegos et al., 1994; Kenworthy et al., 2002; 
Uhrin et al., 2009).  The rapid natural recovery rate for this species indicates that injury to 
H. wrightii beds would have comparatively low restoration costs (sensu Fonseca et al., 
2004).  Primary restoration protocols in the Mini 312 Program capitalize on this 
functional characteristic of H. wrightii by prescribing the planting and fertilization of this 
species to rapidly stabilize sediments and contribute to the establishment of a functional 
seagrass habitat (“compressed succession” Derrenbacker and Lewis, 1982; Fonseca et al., 
1987; Kenworthy et al., 2000).  Here, compressed succession initiates the long-term 
(decades) return of what is most often the primary shallow water seagrass species in 
FKNMS, Thalassia testudinum.   
 
Ongoing analysis is underway to attempt to isolate environmental factors influencing 
natural recovery of these injuries. From previous studies, the influence of site exposure to 
waves seems to indicate that the open gap created by a blowhole will increase in size with 
extreme event wave energy as seen with storm impacts to patchy seagrass and injured 
seagrass beds elsewhere (Fonseca et al., 2000a; Whitfield et al., 2002).  We will continue 
to examine this response to determine whether the particular location of an injury site has 
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a storm-related or even just ambient wave energy exposure that would influence the local 
seagrass landscape pattern (sensu Fonseca and Bell 1998) or might trigger priority 
restoration action to prevent further injury. 
 
However, we can conclude at this point that the injury recovery modeling approach that 
has been adopted for use in the Mini-312 Program is over-estimating recovery to the 
benefit of the Responsible Party in injury cases that are dominated by T. testudinum. No 
decisions have been reached as to whether the modeling process will be revised.   
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