288 research outputs found

    Locally Delivered Salicylic Acid From a Poly(anhydride-ester): Impact on Diabetic Bone Regeneration

    Get PDF
    Diabetes mellitus (DM) involves metabolic changes that can impair bone repair, including a prolonged inflammatory response. A salicylic acid-based poly(anhydride-ester) (SA-PAE) provides controlled and sustained release of salicylic acid (SA) that locally resolves inflammation. This study investigates the effect of polymer-controlled SA release on bone regeneration in diabetic rats where enhanced inflammation is expected. Fifty-six Sprague–Dawley rats were randomly assigned to two groups: diabetic group induced by streptozotocin (STZ) injection or normoglycemic controls injected with citrate buffer alone. Three weeks after hyperglycemia development or vehicle injection, 5 mm critical sized defects were created at the rat mandibular angle and treated with SA-PAE/bone graft mixture or bone graft alone. Rats were euthanized 4 and 12 weeks after surgery, then bone fill percentage in the defect region was assessed by micro-computed tomography (CT) and histomorphometry. It was observed that bone fill increased significantly at 4 and 12 weeks in SA-PAE/bone graft-treated diabetic rats compared to diabetic rats receiving bone graft alone. Accelerated bone formation in normoglycemic rats caused by SA-PAE/bone graft treatment was observed at 4 weeks but not at 12 weeks. This study shows that treatment with SA-PAE enhances bone regeneration in diabetic rats and accelerates bone regeneration in normoglycemic animals

    Study of ligand substituent effects on the rate and stereoselectivity of lactide polymerization using aluminum salen-type initiators.

    No full text
    A series of aluminum salen-type complexes [where salen is N,N′-bis(salicylaldimine)-1,2-ethylenediamine] bearing ligands that differ in their steric and electronic properties have been synthesized and investigated for the polymerization of rac-lactide. X-ray crystal structures on key precatalysts reveal metal coordination geometries intermediate between trigonal bipyramidal and square-based pyramidal. Both the phenoxy substituents and the backbone linker have a significant influence over the polymerization. Electron-withdrawing groups attached to the phenoxy donor generally gave an increased polymerization rate, whereas large ortho substituents generally slowed down the polymerization. The vast majority of the initiators afforded polylactide with an isotactic bias; only one exhibited a bias toward heteroselectivity. Isoselectivity generally increases with increased flexibility of the backbone linker, which is presumed to be better able to accommodate any potential steric clashes between the propagating polymer chain, the inserting monomer unit, and the substituents on the phenoxy donor

    The sport value framework - a new fundamental logic for analyses in sport management

    Get PDF
    Research question: Sports economic theory and management models have frequently been criticised for not sufficiently explaining phenomena in sport management. This article addresses this gap by proposing a conceptual framework that can be used to understand sport management problems and derive appropriate strategies. Research methods: The framework proposed in this conceptual article has been developed through a critical review of existing literature on sport management and theoretical considerations based on the service-dominant logic. Results and findings: The sport value framework (SVF) provides 10 foundational premises on value co-creation in sport management and suggests three levels for its analysis. The main contribution is a new and better theoretical basis for explaining phenomena in sport management compared with traditional sport economic thinking. Moreover, the SVF provides guidance in structuring research in sport management. Implications: The framework encourages researchers and practitioners to rethink their strategies by applying a different logic that captures the complexity of sport management. © 2014 © 2014 European Association for Sport Management

    Delivery modulation in silica mesoporous supports via alkyl chain pore outlet decoration

    Full text link
    This article focuses on the study of the release rate in a family of modified silica mesoporous supports. A collection of solids containing ethyl, butyl, hexyl, octyl, decyl, octadecyl, docosyl, and triacontyl groups anchored on the pore outlets of mesoporous MCM-41 has been prepared and characterized. Controlled release from pore voids has been studied through the delivery of the dye complex tris(2,2¿-bipyridyl)ruthenium(II). Delivery rates were found to be dependent on the alkyl chain length anchored on the pore outlets of the mesoporous scaffolding. Moreover, release rates follow a Higuchi diffusion model, and Higuchi constants for the different hybrid solids have been calculated. A decrease of the Higuchi constants was observed as the alkyl chain used to tune the release profile is longer, confirming the effect that the different alkyl chains anchored into the pore mouths exerted on the delivery of the cargo. Furthermore, to better understand the relation between pore outlets decoration and release rate, studies using molecular dynamics simulations employing force-field methods have been carried out. A good agreement between the calculations and the experimental observations was observed.Financial support from the Spanish Government (projects MAT2009-14564-C04-01 and MAT2009-14564-C04-04) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged.Aznar Gimeno, E.; Sancenón Galarza, F.; Marcos Martínez, MD.; Martínez Mañez, R.; Stroeve, P.; Cano, J.; Amoros Del Toro, P. (2012). Delivery modulation in silica mesoporous supports via alkyl chain pore outlet decoration. Langmuir. 28:2986-2996. https://doi.org/10.1021/la204438jS298629962
    • …
    corecore