2,928 research outputs found

    Detection of fixed points in spatiotemporal signals by clustering method

    Full text link
    We present a method to determine fixed points in spatiotemporal signals. A 144-dimensioanl simulated signal, similar to a Kueppers-Lortz instability, is analyzed and its fixed points are reconstructed.Comment: 3 pages, 3 figure

    Triple correlation for detection of damage-related nonlinearities in composite structures

    Get PDF
    Nonlinear effects in vibration responses are investigated for the undamaged composite plate and the composite plate with a delamination. The analysis is focused on higher harmonic generation in vibration responses for various excitation amplitude levels. This effect is investigated using the triple correlation technique. The dynamics of composite plate was modelled using two-dimensional finite elements and the classical lamination theory. The doubled-node approach was used to model delamination area. Mode shapes and natural frequencies were estimated based on numerical models. Next, the delamination divergence analysis was used to obtain relative displacements for delaminated plies. Experimental modal analysis test was carried out to verify the numerical models. The two strongest vibration modes as well as two vibration modes with the smallest and largest motion level of delaminated plies were selected for nonlinear vibration test. The Fisher criterion was employed to verify the effectiveness and confidence level of the proposed technique. The results show that the method can be used not only to reveal nonlinearities, but also to reliably detect impact damage in composites. These results are confirmed using the statistical analysis

    Glycerol confined in zeolitic imidazolate frameworks: The temperature-dependent cooperativity length scale of glassy freezing

    Get PDF
    In the present work, we employ broadband dielectric spectroscopy to study the molecular dynamics of the prototypical glass former glycerol confined in two microporous zeolitic imidazolate frameworks (ZIF-8 and ZIF-11) with well-defined pore diameters of 1.16 and 1.46 nm, respectively. The spectra reveal information on the modified alpha relaxation of the confined supercooled liquid, whose temperature dependence exhibits clear deviations from the typical super-Arrhenius temperature dependence of the bulk material, depending on temperature and pore size. This allows assigning well-defined cooperativity length scales of molecular motion to certain temperatures above the glass transition. We relate these and previous results on glycerol confined in other host systems to the temperature-dependent length scale deduced from nonlinear dielectric measurements. The combined experimental data can be consistently described by a critical divergence of this correlation length as expected within theoretical approaches assuming that the glass transition is due to an underlying phase transition.Comment: 14 pages, 5 figures + Supplemental Material (4 pages, 6 figures). Final version as accepted for publicatio

    Non-collinear magnetism in Al-Mn topologically disordered systems

    Full text link
    We have performed the first ab-initio calculations of a possible complex non-collinear magnetic structure in aluminium-rich Al-Mn liquids within the real-space tight-binding LMTO method. In our previous work we predicted the existence of large magnetic moments in Al-Mn liquids [A.M. Bratkovsky, A.V. Smirnov, D. N. Manh, and A. Pasturel, \prb {\bf 52}, 3056 (1995)] which has been very recently confirmed experimentally. Our present calculations show that there is a strong tendency for the moments on Mn to have a non-collinear (random) order retaining their large value of about 3~μB\mu_B. The d-electrons on Mn demonstrate a pronounced non-rigid band behaviour which cannot be reproduced within a simple Stoner picture. The origin of the magnetism in these systems is a topological disorder which drives the moments formation and frustrates their directions in the liquid phase.Comment: 10 pages, RevTex 3.0, 24kb. 3 PS figures available on request from [email protected] The work has been presented at ERC ``Electronic Structire of Solids'' (Lunteren, The Netherlands, 9-14 September 1995

    Effectiveness of a Home-Based Eccentric-Exercise Program on the Torque-Angle Relationship of the Shoulder External Rotators: A Pilot Study

    Get PDF
    Context: The role of the rotator cuff is to provide dynamic stability to the glenohumeral joint. Human and animal studies have identified sarcomerogenesis as an outcome of eccentric training indicated by more torque generation with the muscle in a lengthened position. Objective: The authors hypothesized that a home-based eccentric-exercise program could increase the shoulder external rotators’ eccentric strength at terminal internal rotation (IR). Design: Prospective case series. Setting: Clinical laboratory and home exercising. Participants: 10 healthy subjects (age 30 ± 10 y). Intervention: All participants performed 2 eccentric exercises targeting the posterior shoulder for 6 wk using a home-based intervention program using side-lying external rotation (ER) and horizontal abduction. Main Outcome Measures: Dynamic eccentric shoulder strength measured at 60°/s through a 100° arc divided into 4 equal 25° arcs (ER 50–25°, ER 25–0°, IR 0–25°, IR 25–50°) to measure angular impulse to represent the work performed. In addition, isometric shoulder ER was measured at 5 points throughout the arc of motion (45° IR, 30° IR, 15° IR, 0°, and 15° ER). Comparison of isometric and dynamic strength from pre- to posttesting was evaluated with a repeated-measure ANOVA using time and arc or positions as within factors. Results: The isometric force measures revealed no significant differences between the 5 positions (P = .56). Analysis of the dynamic eccentric data revealed a significant difference between arcs (P = .02). The percentage-change score of the arc of IR 25–50° was found to be significantly greater than that of the arc of IR 0–25° (P = .007). Conclusion: After eccentric training the only arc of motion that had a positive improvement in the capacity to absorb eccentric loads was the arc of motion that represented eccentric contractions at the longest muscle length

    Celebrations for the 50-Year Anniversary of IFToMM

    Get PDF

    Pancreatic Resections for Advanced M1-Pancreatic Carcinoma: The Value of Synchronous Metastasectomy

    Get PDF
    Background. For M1 pancreatic adenocarcinomas pancreatic resection is usually not indicated. However, in highly selected patients synchronous metastasectomy may be appropriate together with pancreatic resection when operative morbidity is low. Materials and Methods. From January 1, 2004 to December, 2007 a total of 20 patients with pancreatic malignancies were retrospectively evaluated who underwent pancreatic surgery with synchronous resection of hepatic, adjacent organ, or peritoneal metastases for proven UICC stage IV periampullary cancer of the pancreas. Perioperative as well as clinicopathological parameters were evaluated. Results. There were 20 patients (9 men, 11 women; mean age 58 years) identified. The primary tumor was located in the pancreatic head (n = 9, 45%), in pancreatic tail (n = 9, 45%), and in the papilla Vateri (n = 2, 10%). Metastases were located in the liver (n = 14, 70%), peritoneum (n = 5, 25%), and omentum majus (n = 2, 10%). Lymphnode metastases were present in 16 patients (80%). All patients received resection of their tumors together with metastasectomy. Pylorus preserving duodenopancreatectomy was performed in 8 patients, distal pancreatectomy in 8, duodenopancreatectomy in 2, and total pancreatectomy in 2. Morbidity was 45% and there was no perioperative mortality. Median postoperative survival was 10.7 months (2.6–37.7 months) which was not significantly different from a matched-pair group of patients who underwent pancreatic resection for UICC adenocarcinoma of the pancreas (median survival 15.6 months; P = .1). Conclusion. Pancreatic resection for M1 periampullary cancer of the pancreas can be performed safely in well-selected patients. However, indication for surgery has to be made on an individual basis

    Effectiveness of a Home-Based Eccentric-Exercise Program on the Torque-Angle Relationship of the Shoulder External Rotators: A Pilot Study

    Get PDF
    Context: The role of the rotator cuff is to provide dynamic stability to the glenohumeral joint. Human and animal studies have identified sarcomerogenesis as an outcome of eccentric training indicated by more torque generation with the muscle in a lengthened position. Objective: The authors hypothesized that a home-based eccentric-exercise program could increase the shoulder external rotators’ eccentric strength at terminal internal rotation (IR). Design: Prospective case series. Setting: Clinical laboratory and home exercising. Participants: 10 healthy subjects (age 30 ± 10 y). Intervention: All participants performed 2 eccentric exercises targeting the posterior shoulder for 6 wk using a home-based intervention program using side-lying external rotation (ER) and horizontal abduction. Main Outcome Measures: Dynamic eccentric shoulder strength measured at 60°/s through a 100° arc divided into 4 equal 25° arcs (ER 50–25°, ER 25–0°, IR 0–25°, IR 25–50°) to measure angular impulse to represent the work performed. In addition, isometric shoulder ER was measured at 5 points throughout the arc of motion (45° IR, 30° IR, 15° IR, 0°, and 15° ER). Comparison of isometric and dynamic strength from pre- to posttesting was evaluated with a repeated-measure ANOVA using time and arc or positions as within factors. Results: The isometric force measures revealed no significant differences between the 5 positions (P = .56). Analysis of the dynamic eccentric data revealed a significant difference between arcs (P = .02). The percentage-change score of the arc of IR 25–50° was found to be significantly greater than that of the arc of IR 0–25° (P = .007). Conclusion: After eccentric training the only arc of motion that had a positive improvement in the capacity to absorb eccentric loads was the arc of motion that represented eccentric contractions at the longest muscle length

    Slip statistics of dislocation avalanches under different loading modes

    Get PDF
    Slowly compressed microcrystals deform via intermittent slip events, observed as displacement jumps or stress drops. Experiments often use one of two loading modes: an increasing applied stress (stress driven, soft), or a constant strain rate (strain driven, hard). In this work we experimentally test the influence of the deformation loading conditions on the scaling behavior of slip events. It is found that these common deformation modes strongly affect time series properties, but not the scaling behavior of the slip statistics when analyzed with a mean-field model. With increasing plastic strain, the slip events are found to be smaller and more frequent when strain driven, and the slip-size distributions obtained for both drives collapse onto the same scaling function with the same exponents. The experimental results agree with the predictions of the used mean-field model, linking the slip behavior under different loading modes
    corecore