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ABSTRACT 1 
 2 
Context: The role of the rotator cuff is to provide dynamic stability to the glenohumeral 3 

joint. Human and animal studies have identified sarcomereogenesis as an outcome of 4 

eccentric training indicated by more torque generation with the muscle in a lengthen 5 

position.  6 

Objective: We hypothesize that a home-based eccentric exercise program can increases 7 

the shoulder external rotators eccentric strength at terminal internal rotation.  8 

Design: Prospective case series.  9 

Setting:  Clinical laboratory and home exercising.  10 

Participants: 10 healthy subjects (age=30 ±10 years) 11 

Intervention: All participants performed two eccentric exercises targeting the posterior 12 

shoulder for 6 weeks using a home based intervention program using side-lying external 13 

rotation and horizontal abduction. 14 

Main Outcome Measures: Dynamic eccentric shoulder strength measured at 60°/sec 15 

through a 100° arc divided into four equal 25o arcs (ER 50-25°, ER 25-0°, IR 0-25°, IR 16 

25-50°) to measure angular impulse to represent the work performed. Additionally, 17 

isometric shoulder external rotation was measured at 5 points throughout the arc of 18 

motion (45° IR, 30° IR, 15° IR, 0°, and 15° ER). Comparison of isometric and dynamic 19 

strength from pre to post testing was evaluated with a repeated measure ANOVA using 20 

time and arc or positions as within factors.  21 

Results: The isometric force measures revealed no significant differences between the 22 

five positions (P = 0.56, Table 1).  The dynamic eccentric data analysis revealed a 23 

significant difference between arcs (P = 0.02). The arc of Internal Rotation 25-50° 24 

percent change score was found to be significantly greater than the arc of Internal 25 

Rotation 0-25° (P = 0.007).   26 

 27 
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Conclusion: Following eccentric training the only arc of motion that had a positive 28 

improvement in the capacity to absorb eccentric loads was the arc of motion that 29 

represented eccentric contractions at the longest muscle length.  30 
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INTRODUCTION 31 
 32 

The innate function of skeletal muscle is determined by its cell structure (fiber 33 

morphology) and how these cells are arranged (muscle architecture).  Fortunately, the 34 

plasticity of skeletal muscle permits modifications to morphology and architecture when 35 

the fibers are subjected to altered biochemical and mechanical stress during exercise-36 

induced loss of homeostasis.1  The subsequent architectural and structural adaptations 37 

attenuate these stresses, thereby modifying fiber and muscle function.2, 3  For example, 38 

chronic training-induced fiber type transitions reduce the biochemical stresses produced 39 

by cell metabolism,4  whereas fiber specific hypertrophy attenuates mechanical 40 

stresses.5  Arguably, the most clinically recognizable exercise-induced adaptation in 41 

skeletal muscle is hypertrophy, or the cumulative effect of increased muscle fiber size.  42 

At the cellular level, muscle fibers can increase their size through mechanisms of 43 

myofibrillogenesis and / or sarcomerogenesis. 44 

Myofibrillogenesis is muscle fiber hypertrophy in the axial direction and increases 45 

the cross sectional area of the fiber, because sarcomeres are added in parallel.   46 

Sarcomeres are force producing elements, and the forces produced by them are additive 47 

in parallel.  Therefore, increases in muscle cross sectional area is a good predictor of 48 

peak isometric force6 which is easily tested in the clinic and used as an objective criteria 49 

for return to play following injury.7  Muscle fiber activation and the production of internal 50 

forces are essential stimuli to optimize exercise-induced myofibrillogenesis.8-10  51 

However, if a muscle fiber is also subjected to an external load that results in positive 52 

strain or stretch of the fiber, hypertrophy will also occur in the longitudinal direction, 53 

increasing fiber length due to sarcomerogenesis.11, 12  54 

Sarcomereogenesis, or the addition of sarcomeres in series within a muscle 55 

fiber, has been studied extensively with in-vitro13, 14, in-situ15, 16 and in-vivo 12, 17-23 56 

models. Although immobilizing a muscle in a lengthened position results in an increase 57 
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in serial sarcomere number21, 22, 24, 25 this addition is reversed if the stimulus is removed.  58 

Subsequently, the lack of tension sensing in the sarcomeres returns the serial 59 

sarcomere number to pre-stretch numbers within weeks, and demonstrates the plasticity 60 

of sarcomere number and its relationship to joint angle, and muscle tension.  61 

Serial sarcomere number within individual fibers demonstrates a high correlation 62 

to joint angle26, and signifies a mechanical advantage produced through the gain of 63 

sarcomeres in series. Increased serial sarcomere number would be of benefit in a static 64 

contraction, improving the muscle function by shifting the force-length relationship to the 65 

right, producing peak isometric force at a longer muscle length, or greater torque at a 66 

greater joint angle. During a dynamic contraction, this would reduce sarcomere strain for 67 

a given joint angle during eccentric contractions 3, 12. Further adaptations to function 68 

would be manifested as increases in contractile velocity27, muscle power28, and 69 

extensibility11.  Clinically, this functional adaptation in serial sarcomere number may also 70 

prevent injury when the muscle consistently works eccentrically at longer lengths11, 22, 29.  71 

These dynamic adaptations have been demonstrated in animal models using freely 72 

walking rats 20, 23, 30 and controlled eccentric exercise protocols in rabbits 12, 15, 31. 73 

The adaptation of sarcomere addition in series following chronic eccentric 74 

exercise supports a previously proposed mechanism whereby sarcomere length is 75 

optimized for the muscle length at which force exerted on the tendon is the greatest32. 76 

Therefore this adaptation in serial sarcomere number has clinical implications as a 77 

potential injury preventing mechanism, due to the shift of the force-length (torque-joint 78 

angle) relationship to produce greater force (torque) at longer muscle lengths 11. 79 

Although sarcomere numbers have not been counted in human subjects following 80 

eccentric exercise training, recent studies have demonstrated indirect evidence of 81 

sarcomerogenesis in human subjects, including adaptations in muscle function  33, 34 and 82 

morphology 35, 36 focused primarily on thigh 35-39 and brachial 34, 35 muscles. To date, 83 
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there are no data available as to the effectiveness of an eccentrically biased training 84 

protocol on the function of the external rotators of the glenohumeral joint. Because these 85 

muscles are integral to the deceleration of the humerus during throwing 40, training 86 

protocols that produce a rightward shift of the torque – joint angle relationship may prove 87 

beneficial.  Therefore, the purpose of this study was examine the effectiveness of a six 88 

week home-based eccentric exercise program to enhance isometric and eccentric 89 

external rotation strength in lengthened positions.  90 

 91 

METHODS 92 
 93 
 94 
Setting and Participants 95 
 96 
 97 

Ten participants volunteered for this study from a sample of convenience at a 98 

university setting. (Age: 30±10years, Height: 164±10cm, Mass: 79±18kg). Subjects were 99 

excluded from participation if they reported a history of shoulder or neck pathology, 100 

previous shoulder or neck surgery, or shoulder or neck pain within the last 6 months. All 101 

healthy subjects not excluded and willing to participate read and signed a University of 102 

Kentucky Institutional Institutional Review Board approved informed consent prior to 103 

participation in the study.  104 

Subjects filled out the Penn Shoulder Score before testing to evaluate level of 105 

shoulder function prior to participating. The Penn shoulder score ranges from 0-100 with 106 

100 representing highest level of function. The score has been found to be a reliable and 107 

valid measure of shoulder function41. The Penn shoulder score averaged 97 with a range 108 

(85 – 100) indicating that current participants demonstrated near normal function at the 109 

onset of the study. All testing was completed at the Musculoskeletal Laboratory at the 110 

University of Kentucky with a single unblinded investigator performing all testing. 111 
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 112 
Study Design 113 
 114 
 This prospective case series investigation was designed to investigate the 115 

effectiveness of home-based eccentric exercises for the posterior shoulder to improve 116 

external rotation strength and improve ability of the posterior shoulder to absorb dynamic 117 

internal rotation forces. Three days of familiarization with 1 week of rest between testing 118 

episodes was used to establish baseline values and evaluate reliability of testing 119 

procedures. A six-week exercise intervention incorporating 2 exercises was carried out 120 

by all participants. The same testing procedures were repeated after the program to 121 

evaluate changes from the intervention. Participants were asked to not start a new 122 

exercise program during the study however they could continue to perform their normal 123 

exercise and activities of daily living during the study. The independent variable is time 124 

identified as pre-exercise and post-exercise tests.  There are 2 dependent variables 125 

(isometric torque at 5 angles and dynamic eccentric shoulder external rotation angular 126 

impulse) that were measured at every time point.   127 

 128 

Isometric and Isokinetic Testing Procedures 129 
 130 

Prior to shoulder testing all participants completed 3 shoulder stretches (cross 131 

body, sleeper stretch, corner wall shoulder stretch) for 2 sets of 30 seconds each. 132 

Participants then warmed up with two active range of motion exercises with no load 133 

consisting of side-lying external rotation and side-lying horizontal shoulder abduction and 134 

adduction. Each exercise was performed for approximately one minute.  The same 135 

warm-up occurred prior to each day of testing.  136 

 Next, shoulder strength testing was performed using an isokinetic dynamometer 137 

(Cybex Norm, Ronkonkoma, NY) as previously reported.42  Participants were seated 138 

with their dominant shoulder in 60 degrees of abduction and 30 degrees of horizontal 139 
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adduction. This was defined as the scapular plane in the Cybex Norm user’s manual. 140 

Both positions were confirmed using a hand held goniometer on all subjects. Isometric 141 

testing was always performed first, isometric shoulder external rotation strength was 142 

determined from the average of two trials taken at five test positions (45° IR, 30° IR, 15° 143 

IR, 0°, and 15° ER). The order of the test position was randomly assigned using a 144 

random number generator with Microsoft Excel on each testing day in order to minimize 145 

length change biases related to the length-dependent and time-dependent properties of 146 

muscle.43, 44  147 

 In each test position, subjects performed one sub-maximal practice repetition for 148 

3 seconds, rested for 20 seconds and then performed two maximal repetitions for 3-149 

seconds with a 60 second rest between each effort as previously established.33 150 

Standardized verbal encouragement was given during isometric strength testing for 151 

maximal repetitions to attempt to maximize the subject’s effort and strength potential.45  152 

Peak torque was recorded for both isometric contractions at every angle and averaged 153 

to represent angle specific torque. The excellent reliability of these testing procedures 154 

between days (ICC ≥ 0.85) has been previously reported.42 155 

 Following the collection of isometric torque data, dynamic eccentric shoulder 156 

external rotation torque data were collected, while maintaining the shoulder in the same 157 

test position and through a 100° arc of motion from 50° of external rotation to 50° of 158 

internal rotation. The continuous passive motion (CPM) mode was used with the Humac 159 

software (Computer Sports Medicine Inc, Stoughton, MA) on the Cybex Norm with an 160 

internal rotation velocity set at 60°/second.  From the start position of 50o external 161 

rotation, the subject was instructed to maximally contract into external rotation to initiate 162 

internal rotation. The subject was instructed to maximally resist internal rotation through 163 

the entire range of motion in order to evaluate dynamic eccentric external rotation torque 164 

production. The subject was asked to relax his/her arm as the isokinetic dynamometer 165 
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passively returned the arm into external rotation starting position at 15°/second. This 166 

process removed all concentric activity during testing. Participants were given three 167 

minutes to rest following the familiarization phase and then performed six maximal 168 

efforts in a row, with 7 seconds of recovery during the passive return to 50o of external 169 

rotation between trials. Standardized verbal encouragement was given during eccentric 170 

testing. The middle four trials were averaged together to determine angular impulse later 171 

used for data reduction and statistical analyses.  A total of 3 baseline-testing sessions, 172 

one week apart, were collected before initiating the home exercise eccentric program to 173 

reduce the effect of motor learning during a novel task.46, 47  Post-intervention testing 174 

occurred at 6 weeks after the start of the home exercise program, and consisted of the 175 

same procedures described above. The reliability of the dynamic eccentric shoulder 176 

external rotation strength as determined by angular impulse is excellent (ICC ≥ 0.97) as 177 

previously reported.42 178 

 179 
Exercise Procedures 180 

 181 

The home-based exercise program consisted of 2 eccentrically-biased exercises 182 

consisting of side-lying horizontal adduction and side-lying external rotation. This 183 

exercise protocol is modified from Blackburn et al., shown to be an excellent position to 184 

activate the posterior shoulder musculature48.  Participants were all given the same 185 

exercise instructions for performing two sets of each exercise with 15 repetitions per set, 186 

4 times a week. In order to focus on the eccentric component of the exercise and 187 

minimize the concentric portion, specific instructions were provided and initially 188 

performed with investigator supervision. To bias the exercises for eccentric contractions, 189 

subjects removed the weight from their own hand at the end of the eccentric contraction 190 

phase, and rotated to a supine position to allow gravity to externally rotate the humerus 191 
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back to the starting position to minimize concentric activity.  They then placed the weight 192 

back in the hand of the experimental side, and rotated back to side laying for the next 193 

repetition.  All participants had to demonstrate proper form with both eccentric exercise 194 

maneuvers.  Form was deemed proper when subjects could effectively eliminate 195 

concentric contractions from both exercises regimens, and perform eccentric 196 

contractions through the full range of motion at the correct speed as per the instructions 197 

(Appendix). To support the clinical instruction, detailed written methods and pictures 198 

were given to participants to take home (Appendix).   All eccentric exercises were 199 

performed at a slow pace of eight seconds for lowering the weight to emphasize the 200 

eccentric load to the posterior rotator cuff. Participants returned weekly to progress their 201 

resistance loads and assure proper exercise form. 202 

 Starting resistance for the eccentric exercise was determined from the highest 203 

dynamic eccentric shoulder external rotation average peak torque generated on one of 204 

the 3 baseline testing days. Average peak torque (Nm) was divided by the length of the 205 

subject’s forearm (m) to estimate the force (N), which was then converted to pounds and 206 

multiplied by 0.2 to determine the weight used for the first week of training.   Subjects 207 

were progressed on a weekly basis using a linear progression of increasing loads while 208 

repetitions were held constant.  After the first week, the initial load was increased 20% 209 

and then subsequently increased by 25% weekly for the next 5 training weeks. Subjects 210 

were given a log to track their weight, sets, and repetitions that was returned at the end 211 

of the study. Additionally, a modified Borg perceived exertion scale was used to record 212 

level of difficulty when performing exercise. The scale ranged from 0-10 with 10 213 

representing maximal effort during an exercise. This allowed the researchers to monitor 214 

exercise progress so that resistance loads could match perceived exertion during 215 

exercise.  216 
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 217 
Data Reduction and Statistical Analysis 218 
 219 
 The two isometric trials for each day of testing were averaged together to 220 

represent external rotation torque at each shoulder angle. The post-exercise test data 221 

were subtracted from the pre-exercise test data for each subject to determine the 222 

change score. Shapiro-Wilk test for normality revealed that the isometric data were not 223 

normally distributed. Non-Parametric analysis was carried out using Friedman test to 224 

determine if  change scores differed across the five positions (IR 45°, IR 30°, IR 15°, 225 

Neutral, ER 15°) for isometric data with alpha level set at P ≤ 0.05. Wilcoxon Signed 226 

Rank Test was used to compare individual differences between positions if appropriate, 227 

with alpha level corrected for ten comparisons (P ≤ 0.005).  228 

Raw data from each dynamic eccentric testing day for each subject were 229 

extracted from the Cybex. The raw data provided time, speed, angle and torque at a rate 230 

of 100Hz. These data were imported into an excel (Microsoft, Redwood CA) template to 231 

calculate angular impulse. Angular impulse was calculated using the trapezoidal 232 

equation for area {Σ(1/2 [θ at point A + torque at point B]*.01)} for entire trial. The four 233 

middle efforts of the 6 trials were averaged together. The average total angular impulse 234 

was further divided into 4 equal 25° arcs of motion to clearly represent work production 235 

through the range of motion. The post-exercise test data were subtracted from the pre-236 

exercise test data for each subject to determine the change score. Shapiro-Wilk test for 237 

normality revealed that the dynamic eccentric data were not normally distributed. Non-238 

Parametric analysis was carried out using Friedman test to determine if change scores 239 

differed across the four arcs (ER 50-25°, ER 25-0°, IR 0-25°, IR 25-50°) for dynamic 240 

eccentric data with alpha level set at P ≤ 0.05. Wilcoxon Signed Rank Test was used to 241 

compare individual differences between arcs if appropriate, with alpha level corrected for 242 

six comparisons (P ≤0.0083).  243 
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 244 

RESULTS 245 

 246 
 The isometric data analysis is presented using median values and inter-quartile 247 

ranges as non-parametric analysis was performed which revealed no significant 248 

differences between the five positions (P = 0.56, Table 1).  The dynamic eccentric data 249 

analysis revealed a significant difference between arcs (P = 0.02, Figure 1). Correcting 250 

for multiple comparisons between the four arcs, there was only one pairwise comparison 251 

to reach significant difference. The arc of Internal Rotation 25-50° percent change score 252 

was found to be significantly greater than the arc of Internal Rotation 0-25° (P = 0.007, 253 

Table 2).  Following eccentric training the only arc of motion that had a positive 254 

improvement in the capacity to absorb eccentric loads was the arc of motion that 255 

represented eccentric contractions at the longest muscle length. 256 

DISCUSSION 257 

 258 
Although Fridén was the first to propose sarcomerogenesis as a beneficial, 259 

functional adaptation to eccentric exercise in 1984,49 direct mechanistic evidence of 260 

increased serial sarcomere number following chronic training with eccentrically biased 261 

contractions has only been demonstrated in animal models to date.  By training rats to 262 

walk on a treadmill, Lynn and Morgan were the first to show an exercise-specific 263 

adaptation in serial sarcomere number in the vastus intermedius muscle.30  Although 264 

fiber strains were not directly measured, it was reasonably assumed that the quadriceps 265 

operated eccentrically during daily bouts of downhill walking, and eccentric training was 266 

associated with a significant increase in fiber length and serial sarcomere number, and 267 

therefore greater force at longer lengths.20, 30  By directly measuring fiber dynamics, 268 

Butterfield et al. associated positive active fiber strains to subsequent serial sarcomere 269 



13 
 

number increases of ~10% in the vastus intermedius after 10 days of eccentrically-270 

biased exercise.23  Subsequently it was shown that higher positive fiber strains during 271 

eccentric exercise resulted in greater serial sarcomere number adaptations, and this 272 

could be accomplished by exercising the muscle through excursions involving long 273 

muscle lengths near or at terminal ranges of motion.50 12   274 

Serial sarcomere number measurements, and therefore direct measurements of 275 

sarcomerogenesis, are impractical, if not impossible in human subjects.  Therefore, 276 

architectural and functional measures previously associated with sarcomerogenesis in 277 

animal models are used as indirect measures of a beneficial adaptation to eccentric 278 

exercise in humans, including a rightward shift in the muscle’s torque-joint angle 279 

relationship,34, 37 adaptations in muscle architecture such as longer muscle fibers,35, 36, 51 280 

and/or increased fiber pennation angles.52  281 

In this study, by training the posterior shoulder muscles eccentrically, we were 282 

interested to see if changes in both isometric and dynamic eccentric strength of the 283 

shoulder external rotators would increase the ability of the posterior shoulder 284 

musculature to absorb eccentric loads at the end range of the eccentric motion.  We 285 

found that our eccentrically biased training program for the posterior shoulder muscles 286 

did not have an effect on their isometric torque-joint angle relationship.  Although a 287 

rightward shift following repeated bouts of eccentric exercise training has been 288 

associated with serial sarcomerogenesis in human muscle,37 there is evidence that 289 

sarcomere number adaptations can also occur without a significant shift in this 290 

relationship.  Chen et al., found a direct association between training load and torque-291 

angle shift following eccentric exercise training in human subjects.34  In their study, only 292 

subjects that performed eccentric exercises at 100% of maximal voluntary contraction 293 

exhibited a rightward shift of the torque-angle curve on the biceps brachii, despite 294 

additional groups that trained submaximally exhibiting other beneficial training 295 
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adaptations such as the repeated bout effect, or resistance to subsequent eccentric 296 

exercise-induced injury.34   297 

It is therefore possible that our training program was not long enough or the 298 

resistive load may not have been adequate to facilitate a measureable muscular 299 

adaption in isometric torque.  This is supported, in part, by the aforementioned eccentric 300 

training studies in rabbits, whereby higher evoked forces during eight weeks of eccentric 301 

training resulted in greater rightward shift of the torque-angle curves. 12, 50  In addition, 302 

the lack of a shift in the isometric torque-angle relationship may be associated with the 303 

methodology in calculating the angle of isometric peak torque production.53  By 304 

necessity, the isometric torque measures in our study herein are discreet data points, 305 

measured at every 15o of glenohumeral rotation.  Therefore, it is possible that changes 306 

in isometric peak torque may have occurred between two discreet measurements.  307 

Lastly, the torque-angle relationship is a measurement that is sensitive to several 308 

factors, and easily altered by factors such as reduced effort, fatigue, alterations in series 309 

compliance, and/or changes in muscle / tendon stiffness.53   310 

Therefore, we also measured the dynamic eccentric torque-angle relationship as 311 

a more robust indicator of the muscle’s capacity for energy absorption.54, 55   The 312 

mechanism of force production during an eccentric contraction differs significantly from 313 

the traditional mechanism of cross-bridge produced force during isometric and 314 

concentric contractions.56-60  Therefore, forces produced eccentrically are independent of 315 

fiber type61 and although fiber transitions can modify the muscle’s contractile velocity, 316 

power, and rate of force development during concentric contractions, their influence on 317 

force is essentially eliminated during isometric contractions, when the velocity is zero.62  318 

However, exercise-induced alterations in the elastic elements of the muscle and/or 319 

tendon can modify force production.63, 64  Elastic energy storage is an essential 320 

component of the shoulder musculature for throwing activities65 and stiffening of the 321 
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parallel elastic component of the muscle by itself or in conjunction with 322 

sarcomerogenesis could explain our results.  The increase in angular impulse at the 323 

longest muscle length is a significant adaptation to eccentrically biased exercise.  It can 324 

be produced by increasing the length of the muscle fibers20, is indicative of serial 325 

sarcomere number increases11, 12, and it increases the amount of energy that the 326 

external rotators can absorb while actively lengthening, 3, 66  and reduces the potential for 327 

eccentric exercise-induced strain damage and injury.11, 20, 29, 33, 34, 36, 37, 39, 51, 52, 54  328 

It is well documented that the posterior shoulder needs to act eccentrically to 329 

decelerate the arm during the termination of a baseball pitch, tennis serve or similar 330 

movement.67-70  We believe the ability to effectively activate the posterior shoulder 331 

musculature eccentrically through the full range of motion is critical for avoiding injuries 332 

in the shoulder, specifically for overhead throwing athletes.  Although our subjects 333 

performed the testing and exercise procedures with the shoulder in a different position 334 

compared to that of a throwing motion, we propose that the functional adaptations 335 

measured in this study are translatable.  The posterior shoulder musculature must 336 

decelerate the shoulder during both the deceleration phase and the follow-through 337 

phase of pitching, as the loads are dissipated.  Fleisig et al., calculated a significant 338 

internal rotation torque at the shoulder that was still evident at terminal internal rotation.69  339 

At the time of ball release, Werner et al., calculated high distraction forces that were 340 

dissipated over course of the following 200ms71, 72, as the shoulder continues to 341 

internally rotate to approximately 0o of glenohumeral rotation.73  342 

 343 

Limitations 344 

We used two different positions for exercising and testing the muscles of the 345 

posterior shoulder.  It is reasonable to expect that exercise-induced adaptations in 346 

skeletal muscle to be specific function; i.e. contraction type and muscle length. 347 
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Therefore, it is possible that the exact magnitude of the adaptations were not measured 348 

due to the different position of testing.  However, we did find an improved eccentric 349 

impulse at long muscle lengths for the posterior shoulder musculature in a shoulder 350 

position (and muscle position), which indicates the robustness of the adaptation at the 351 

tissue level.  Future studies will utilize a laboratory setting to test and measure in 352 

identical positions.   353 

It is possible that adaptations in motor unit recruitment occurred in our subjects 354 

over the course of the study.  However, the lack of a significant training effect in the 355 

isometric torque data in conjunction with the systematic improvement in eccentric torque 356 

production in only the terminal arc of motion makes this less likely.  In addition, muscle 357 

morphological and functional adaptations to eccentric loading are evident earlier 358 

compared to adaptations from isometric and concentric training, which supports fiber 359 

adaptation following a short, eccentrically-biased, four week training program.74  In future 360 

studies measuring eccentric exercise-induced adaptations in our laboratory, we will 361 

include longer exercise durations and higher intensities, incorporate methods to assess 362 

muscle activation such as EMG, and measure rate of torque development and muscle 363 

stiffness to further separate viable mechanisms underlying the functional adaptations in 364 

skeletal muscle.  365 

 366 

Conclusion 367 

In this pilot study, we have shown for the first time that an eccentrically-biased 368 

home exercise program can improve the energy absorption capacity of the posterior 369 

shoulder muscles by increasing the eccentric torque production at terminal internal 370 

rotation.  The exercises performed in this study can be translated easily for clinical use 371 

by overhead athletes. While these exercises do not approach the velocity seen in 372 

overhead sports, they could be good options for training program for overhead athletes 373 
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or during rehabilitation to facilitate eccentric strengthening of the posterior shoulder 374 

musculature. The two posterior shoulder eccentric exercises used during this six week 375 

intervention appear to support the concept of specific adaptation to imposed demand 376 

principle and increases the ability to absorb forces with the muscle in a lengthened 377 

position.    378 
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 379 

Table 1. Isometric Change scores 380 

 Median Change 

Score 

Interquartile Range 

External Rotation 15° 4.79 (-5.6 – 11.4%) 

Neutral 0° 1.18 (-5.1 – 21.6%) 

Internal Rotation 15° 7.75 (-10.4 – 26.5%) 

Internal Rotation 30° -1.91 (-2.9 – 17.8%) 

Internal Rotation 45° 1.64 (-1.2 – 17.4%) 

(-) indicates that the isometric strength decreased from baseline value 381 

 382 

  383 
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 384 
Table 2. Dynamic Eccentric Percent Change Scores compared to the longest position of 385 

Internal Rotation arc 25-50° 386 

 Short   Long 

 External 

Rotation 

50-25° 

External 

Rotation 

25-0° 

Internal 

Rotation 

0-25° 

Internal 

Rotation 

25-50° 

Median Change Scores -3.4 -3.0 +0.4 +9.5 

Interquartile Range (-21.8 – 12.7) (-14.1 – 7.9) (-8.9 – 12.9) (2.2 – 31.0) 

Significance 

Compared to Long IR  25-50° 

P = 0.059 P =0 .017 P = 0.007*  

* Indicates that change scores is significantly different from Internal Rotation 25-50° 387 

(-) indicates that the angular impulse decreased from baseline value 388 

  389 
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Figure 1 390 

391 
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Figure captions 392 
 393 

Figure 1. Mean eccentric angular impulse for the posterior shoulder muscles on day 1 394 

(open triangles) and following and eccentrically biased training program (open squares) 395 

for four arcs of motion. Eccentric contractions began with the posterior shoulder muscles 396 

at their shortest length (50o of external rotation) and the muscles were lengthened during 397 

contraction to their longest lengths (50o internal rotation). Following eccentrically biased 398 

training, the area under the eccentric torque-angle curve (angular impulse) was 399 

significantly greater (*) for the arc of motion that represented the longest muscle lengths 400 

(25-50o internal rotation).  401 
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Appendix 

Side-lying Eccentric Horizontal Adduction 

1) Lie on your back near the edge of a firm surface; preferably the floor or a firm mattress. 

(Figure 1) 

2) Extend the non-exercising arm straight up in the air while holding the weight. (Figure 2) 

3) Extend your exercising arm straight up in the air, transfer the weight to the opposite 

(exercising) hand and drop your non-exercising hand to your side. (Figures 3-5) 

4) Roll on to your non-exercising side keeping the weight still extended straight up in the air. 

(Figure 6) 

5) Now, using an 8 count, slowly lower the weight, keeping your thumb pointing towards the 

ceiling, your arm straight, and your arm in-line with your mouth. (Figures 7-8) 

6) Let the weight lower as far as the surface will permit, hanging off if possible (Figure 8) 

7) Once the weight has been fully lowered, roll on to your back (Figure 9) and assume the 

starting position. (Figure 1) Repeat the steps for 2 sets of 15 repetitions. 

   

Figure 1 Figure 2 Figure 3 

   
Figure 4 Figure 5 Figure 6 

  
 

 

 

Figure 7 Figure 8 Figure 9 

  



Side-Lying Eccentric External Rotation 

1) Lie on your side on a firm surface, with a rolled up towel or bolster placed under your arm, 

with the weight held by your non-exercising arm as shown. (Figure 1) 

2) Roll onto your back and bring the weight up to your exercising arm, making sure to keep the 

towel under your arm. (Figure 2) 

3) Roll back on to your side, your arm should rotate up towards the ceiling. (Figure 3) 

4) Slowly lower the weight towards the surface, keeping the elbow bent at a right angle. 

(Figures 4-6) 

5) Once you have gone through your available range of motion, drop the weight to the surface. 

(Figure 7) 

6) With the non-exercising arm, pick up the weight. (Figure 8) and position your arm back in 

the starting position to repeat the exercise for the given number of repetitions. (Figures 9, 1)   

   

Figure 1 Figure 2 Figure 3 

   
Figure 4 Figure 5 Figure 6 

   
Figure 7 Figure 8 Figure 9 
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