27 research outputs found

    Lack of an Association or an Inverse Association Between Low-Density-Lipoprotein Cholesterol and Mortality in the Elderly: A Systematic Review

    Get PDF
    OBJECTIVE: It is well known that total cholesterol becomes less of a risk factor or not at all for all-cause and cardiovascular (CV) mortality with increasing age, but as little is known as to whether low-density lipoprotein cholesterol (LDL-C), one component of total cholesterol, is associated with mortality in the elderly, we decided to investigate this issue. SETTING, PARTICIPANTS AND OUTCOME MEASURES: We sought PubMed for cohort studies, where LDL-C had been investigated as a risk factor for all-cause and/or CV mortality in individuals ≥60 years from the general population. RESULTS: We identified 19 cohort studies including 30 cohorts with a total of 68 094 elderly people, where all-cause mortality was recorded in 28 cohorts and CV mortality in 9 cohorts. Inverse association between all-cause mortality and LDL-C was seen in 16 cohorts (in 14 with statistical significance) representing 92% of the number of participants, where this association was recorded. In the rest, no association was found. In two cohorts, CV mortality was highest in the lowest LDL-C quartile and with statistical significance; in seven cohorts, no association was found. CONCLUSIONS: High LDL-C is inversely associated with mortality in most people over 60 years. This finding is inconsistent with the cholesterol hypothesis (ie, that cholesterol, particularly LDL-C, is inherently atherogenic). Since elderly people with high LDL-C live as long or longer than those with low LDL-C, our analysis provides reason to question the validity of the cholesterol hypothesis. Moreover, our study provides the rationale for a re-evaluation of guidelines recommending pharmacological reduction of LDL-C in the elderly as a component of cardiovascular disease prevention strategies

    Experimental glomerulonephritis induced by hydrocarbon exposure: A systematic review

    Get PDF
    BACKGROUND: Much epidemiological evidence suggests that hydrocarbon exposure may induce glomerulonephritis and worsen its course in many patients. The mechanisms are unknown, however, no specific microscopic pattern has been identified, and it has also been argued that hydrocarbon exposure causes tubular damage mainly. Studying experimental animals may best answer these questions, and as no systematic review of glomerulonephritis produced experimentally by hydrocarbon exposure has been performed previously, I found it relevant to search for and analyse such studies. METHODS: Animal experiments having mimicked human glomerulonephritis by hydrocarbon exposure were sought on Medline and Toxnet RESULTS: Twenty-six experiments using thirteen different hydrocarbons were identified. Several human subtypes were observed including IgA nephritis, mesangial, proliferative and extracapillary glomerulonephritis, focal and focal-segmental sclerosis, minimal change nephropathy, anti-GBM and anti-TBM nephritis, and glomerulonephritis associated with peiarteritis nodosa. Glomerular proteinuria was seen in 10/12 experiments that included urine analyses, and renal failure in 5/8 experiments that included measurements of glomerular function. All experiments resulted in various degrees of tubular damage as well. In most studies, where the animals were examined at different times during or after the exposure, the renal microscopic and functional changes were seen immediately, whereas deposits of complement and immunoglobulins appeared late in the course, if at all. CONCLUSION: These experiments are in accord with epidemiological evidence that hydrocarbon exposure may cause glomerulonephritis and worsen renal function. Probable mechanisms include an induction of autologous antibodies and a disturbance of normal immunological functions. Also, tubular damage may increase postglomerular resistance, resulting in a glomerular deposition of macromolecules. In most models a causal role of glomerular immune complex formation was unlikely, but may rather have been a secondary phenomenon. As most glomerulonephritis subgroups were seen and as some of the hydrocarbons produced more than one subgroup, the microscopic findings in a patient cannot be used as a clue to the causation of his disease. By the same reason, the lack of a specific histological pattern in patients with glomerulonephritis assumed to have been caused by hydrocarbon exposure is not contradictive

    Saturated fat does not affect blood cholesterol

    No full text

    Saturated fat does not affect blood cholesterol

    No full text
    corecore