17 research outputs found

    PIN and CCCH Zn-finger domains coordinate RNA targeting in ZC3H12 family endoribonucleases.

    Get PDF
    The CCCH-type zinc finger (ZnF) containing ZC3H12 ribonucleases are crucial in post-transcriptional immune homoeostasis with ZC3H12A being the only structurally studied member of the family. In this study, we present a structural-biochemical characterization of ZC3H12C, which is linked with chronic immune disorders like psoriasis. We established that the RNA substrate is cooperatively recognized by the PIN and ZnF domains of ZC3H12C and analyzed the crystal structure of ZC3H12C bound to a single-stranded RNA substrate. The RNA engages in hydrogen-bonded contacts and stacking interactions with the PIN and ZnF domains simultaneously. The ZC3H12 ZnF shows unprecedented structural features not previously observed in any member of the CCCH-ZnF family and utilizes stacking interactions via a unique combination of spatially conserved aromatic residues to align the target transcript in a bent conformation onto the ZnF scaffold. Further comparative structural analysis of ZC3H12 CCCH-ZnF suggests that a trinucleotide sequence is recognized by ZC3H12 ZnF in target RNA. Our work not only describes the initial structure-biochemical study on ZC3H12C, but also provides the first molecular insight into RNA recognition by a ZC3H12 family member. Finally, our work points to an evolutionary code for RNA recognition adopted by CCCH-type ZnF proteins

    Malt1-Induced Cleavage of Regnase-1 in CD4+ Helper T Cells Regulates Immune Activation

    Get PDF
    SummaryRegnase-1 (also known as Zc3h12a and MCPIP1) is an RNase that destabilizes a set of mRNAs, including Il6 and Il12b, through cleavage of their 3′ UTRs. Although Regnase-1 inactivation leads to development of an autoimmune disease characterized by T cell activation and hyperimmunoglobulinemia in mice, the mechanism of Regnase-1-mediated immune regulation has remained unclear. We show that Regnase-1 is essential for preventing aberrant effector CD4+ T cell generation cell autonomously. Moreover, in T cells, Regnase-1 regulates the mRNAs of a set of genes, including c-Rel, Ox40, and Il2, through cleavage of their 3′ UTRs. Interestingly, T cell receptor (TCR) stimulation leads to cleavage of Regnase-1 at R111 by Malt1/paracaspase, freeing T cells from Regnase-1-mediated suppression. Furthermore, Malt1 protease activity is critical for controlling the mRNA stability of T cell effector genes. Collectively, these results indicate that dynamic control of Regnase-1 expression in T cells is critical for controlling T cell activation

    Post-transcriptional regulation of immunological responses by Regnase-1-related RNases

    Get PDF
    Regulation of messenger RNA (mRNA) decay plays a crucial role in the control of gene expression. Canonical mRNA decay pathways are initiated by deadenylation and decapping, and are followed by exonucleolytic degradation. However, recent studies revealed that endoribonucleolytic cleavage also mediates mRNA decay, and both exoribonucleolytic and endoribonucleolytic decay pathways are important for the regulation of immune responses. Regnase-1 functions as an endoribonuclease to control immunity by damping mRNAs. Particularly, Regnase-1 controls cytokines and other inflammatory mediators by recognizing their mRNAs via stem-loop structures present in the 3' untranslated regions. Regnase-1 was found to be critical for human inflammatory diseases such as ulcerative colitis and idiopathic pulmonary fibrosis. Furthermore, a set of Regnase-1-related RNases contribute to immune regulation as well as antiviral host defense. In this review, we provide an overview of recent findings as to immune-related RNA-binding proteins (RBPs) with an emphasis on stem-loop-mediated mRNA decay via Regnase-1 and related RNases and discuss how the function of these RBPs is regulated and contributes to inflammatory disorders

    RNA Recognition and Immunity—Innate Immune Sensing and Its Posttranscriptional Regulation Mechanisms

    No full text
    RNA acts as an immunostimulatory molecule in the innate immune system to activate nucleic acid sensors. It functions as an intermediate, conveying genetic information to control inflammatory responses. A key mechanism for RNA sensing is discriminating self from non-self nucleic acids to initiate antiviral responses reliably, including the expression of type I interferon (IFN) and IFN-stimulated genes. Another important aspect of the RNA-mediated inflammatory response is posttranscriptional regulation of gene expression, where RNA-binding proteins (RBPs) have essential roles in various RNA metabolisms, including splicing, nuclear export, modification, and translation and mRNA degradation. Recent evidence suggests that the control of mRNA stability is closely involved in signal transduction and orchestrates immune responses. In this study, we review the current understanding of how RNA is sensed by host RNA sensing machinery and discuss self/non-self-discrimination in innate immunity focusing on mammalian species. Finally, we discuss how posttranscriptional regulation by RBPs shape immune reactions

    N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation

    Get PDF
    宿主がHIV-1感染を抑制する新たなメカニズムの解明 --N4BP1によるRNA分解とその調節がウイルス再活性化を調節する--. 京都大学プレスリリース. 2019-05-29.RNA-modulating factors not only regulate multiple steps of cellular RNA metabolism, but also emerge as key effectors of the immune response against invading viral pathogens including human immunodeficiency virus type-1 (HIV-1). However, the cellular RNA-binding proteins involved in the establishment and maintenance of latent HIV-1 reservoirs have not been extensively studied. Here, we screened a panel of 62 cellular RNA-binding proteins and identified NEDD4-binding protein 1 (N4BP1) as a potent interferon-inducible inhibitor of HIV-1 in primary T cells and macrophages. N4BP1 harbours a prototypical PilT N terminus-like RNase domain and inhibits HIV-1 replication by interacting with and degrading viral mRNA species. Following activation of CD4+ T cells, however, N4BP1 undergoes rapid cleavage at Arg 509 by the paracaspase named mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1). Mutational analyses and knockout studies revealed that MALT1-mediated inactivation of N4BP1 facilitates the reactivation of latent HIV-1 proviruses. Taken together, our findings demonstrate that the RNase N4BP1 is an efficient restriction factor of HIV-1 and suggest that inactivation of N4BP1 by induction of MALT1 activation might facilitate elimination of latent HIV-1 reservoirs

    Regnase-1 Maintains Iron Homeostasis via the Degradation of Transferrin Receptor 1 and Prolyl-Hydroxylase-Domain-Containing Protein 3 mRNAs

    Get PDF
    腸で鉄の吸収を調節するメカニズムの一端を解明 -- 貧血時に鉄吸収を促進するフィードバック機構を発見--. 京都大学プレスリリース. 2017-05-24.Iron metabolism is regulated by transcriptional and post-transcriptional mechanisms. The mRNA of the iron-controlling gene, transferrin receptor 1 (TfR1), has long been believed to be negatively regulated by a yet-unidentified endonuclease. Here, we show that the endonuclease Regnase-1 is critical for the degradation of mRNAs involved in iron metabolism in vivo. First, we demonstrate that Regnase-1 promotes TfR1 mRNA decay. Next, we show that Regnase-1−/− mice suffer from severe iron deficiency anemia, although hepcidin expression is downregulated. The iron deficiency anemia is induced by a defect in duodenal iron uptake. We reveal that duodenal Regnase-1 controls the expression of PHD3, which impairs duodenal iron uptake via HIF2α suppression. Finally, we show that Regnase-1 is a HIF2α-inducible gene and thus provides a positive feedback loop for HIF2α activation via PHD3. Collectively, these results demonstrate that Regnase-1-mediated regulation of iron-related transcripts is essential for the maintenance of iron homeostasis

    Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms.

    Get PDF
    炎症がRNA分解により制御されるメカニズムを解明 -二つのブレーキが炎症を巧妙にストップする-. 京都大学プレスリリース. 2015-05-22.Regnase-1 and Roquin are RNA binding proteins essential for degradation of inflammation-related mRNAs and maintenance of immune homeostasis. However, their mechanistic relationship has yet to be clarified. Here, we show that, although Regnase-1 and Roquin regulate an overlapping set of mRNAs via a common stem-loop structure, they function in distinct subcellular locations: ribosome/endoplasmic reticulum and processing-body/stress granules, respectively. Moreover, Regnase-1 specifically cleaves and degrades translationally active mRNAs and requires the helicase activity of UPF1, similar to the decay mechanisms of nonsense mRNAs. In contrast, Roquin controls translationally inactive mRNAs, independent of UPF1. Defects in both Regnase-1 and Roquin lead to large increases in their target mRNAs, although Regnase-1 tends to control the early phase of inflammation when mRNAs are more actively translated. Our findings reveal that differential regulation of mRNAs by Regnase-1 and Roquin depends on their translation status and enables elaborate control of inflammation

    Translation-dependent unwinding of stem–loops by UPF1 licenses Regnase-1 to degrade inflammatory mRNAs

    Get PDF
    炎症が制御される新たなRNA分解メカニズムを解明 --新たな免疫賦活化法の開発に道筋--. 京都大学プレスリリース. 2019-07-25.Regnase-1-mediated mRNA decay (RMD), in which inflammatory mRNAs harboring specific stem–loop structures are degraded, is a critical part of proper immune homeostasis. Prior to initial translation, Regnase-1 associates with target stem–loops but does not carry out endoribonucleolytic cleavage. Single molecule imaging revealed that UPF1 is required to first unwind the stem–loops, thus licensing Regnase-1 to proceed with RNA degradation. Following translation, Regnase-1 physically associates with UPF1 using two distinct points of interaction: The Regnase-1 RNase domain binds to SMG1-phosphorylated residue T28 in UPF1; in addition, an intrinsically disordered segment in Regnase-1 binds to the UPF1 RecA domain, enhancing the helicase activity of UPF1. The SMG1-UPF1–Regnase-1 axis targets pioneer rounds of translation and is critical for rapid resolution of inflammation through restriction of the number of proteins translated by a given mRNA. Furthermore, small-molecule inhibition of SMG1 prevents RNA unwinding in dendritic cells, allowing post-transcriptional control of innate immune responses
    corecore