33 research outputs found

    Probe walking : development of novel probes for DNA fingerprinting

    Get PDF
    Thesis--University of Tsukuba, D.M.S.(A), no. 786, 1990. 3. 23Offprint. Originally published in: Human genetics, v. 83, pp. 223-226, 1989Joint authors: Shogo Misawa and Shintaroh UedaIncludes supplementary treatise

    A partial nuclear genome of the Jomons who lived 3000 years ago in Fukushima, Japan

    Get PDF
    The Jomon period of the Japanese Archipelago, characterized by cord-marked ‘jomon’ potteries, has yielded abundant human skeletal remains. However, the genetic origins of the Jomon people and their relationships with modern populations have not been clarified. We determined a total of 115 million base pair nuclear genome sequences from two Jomon individuals (male and female each) from the Sanganji Shell Mound (dated 3000 years before present) with the Jomon-characteristic mitochondrial DNA haplogroup N9b, and compared these nuclear genome sequences with those of worldwide populations. We found that the Jomon population lineage is best considered to have diverged before diversification of present-day East Eurasian populations, with no evidence of gene flow events between the Jomon and other continental populations. This suggests that the Sanganji Jomon people descended from an early phase of population dispersals in East Asia. We also estimated that the modern mainland Japanese inherited <20% of Jomon peoples’ genomes. Our findings, based on the first analysis of Jomon nuclear genome sequence data, firmly demonstrate that the modern mainland Japanese resulted from genetic admixture of the indigenous Jomon people and later migrants

    mtDNA diversity of the Zapotec in Mexico suggests a population decline long before the first contact with Europeans.

    Get PDF
    The New World is the last continent colonized by anatomically modern humans, Homo sapiens. The first migrants entered the New World from Asia through Beringia. It is suggested that there were three streams of Asian gene flow, one major and two additional minor gene flows. The first major migrants took a Pacific coastal route and began spreading to the American continent before the opening of the ice-free corridor. We investigated the diversity of full-length mitochondrial DNA genomes of the Zapotec population, residing in the Mesoamerican region, and reconstructed their demographic history using Bayesian Skyline Plots. We estimated the initial date of gene flow into the New World by Zapotec ancestors at around 17 000–19 000 years ago,which is highly concordant with previous studies. We also show a population decline after the initial expansion. This decline started 4000 years ago, long before European contact with Native Americans. This indicates that other factors including climatec hange should be considered to explain the observed demographic pattern

    MitoSuite: a graphical tool for human mitochondrial genome profiling in massive parallel sequencing

    No full text
    Recent rapid advances in high-throughput, next-generation sequencing (NGS) technologies have promoted mitochondrial genome studies in the fields of human evolution, medical genetics, and forensic casework. However, scientists unfamiliar with computer programming often find it difficult to handle the massive volumes of data that are generated by NGS. To address this limitation, we developed MitoSuite, a user-friendly graphical tool for analysis of data from high-throughput sequencing of the human mitochondrial genome. MitoSuite generates a visual report on NGS data with simple mouse operations. Moreover, it analyzes high-coverage sequencing data but runs on a stand-alone computer, without the need for file upload. Therefore, MitoSuite offers outstanding usability for handling massive NGS data, and is ideal for evolutionary, clinical, and forensic studies on the human mitochondrial genome variations. It is freely available for download from the website https://mitosuite.com

    Elevated evolutionary rate in genes with homopolymeric amino acid repeats constituting nondisordered structure

    No full text
    Homopolymeric amino acid repeats are tandem repeats of single amino acids. About 650 genes are known to have repeats of this kind comprising seven residues or more in the human genome. According to the evolutionary conservativeness, we classified the repeats into three categories: those whose length is conserved among mammals (CM), those whose length differs among nonprimate mammals but is conserved among primates (CP), and those whose length differs among primates (VP). The frequency of each repeat, especially Ala, Leu, Pro, and Glu repeats, varies greatly in each category. The 3D structure of homopolymeric amino acid repeats is considered to be intrinsically disordered. As expected, a large proportion of the repeats had a disordered structure, and nearly half of the repeats were predicted as completely disordered. However, a number of the repeats predicted to have nondisordered structure: 13% and 25% of the repeats for categories CM and VP, respectively. Comparison of the substitution rates showed a higher Ka/Ks ratio for the genes with not disordered repeats than the genes with disordered repeats. These results indicate that amino acid substitution rates have been elevated in the genes with nondisordered repeats

    Genetic Study of the Paleolithic and Neolithic Southeast Asians

    No full text
    DNA samples were extracted from six prehistoric human remains, found on the Malay Peninsula, dating to the Paleolithic and the Neolithic periods. Nucleotide sequences of mitochondrial DNA were determined by the polymerase chain reaction–direct sequencing method. A phylogenetic tree between prehistoric and present humans was constructed based on the nucleotide sequence data. Mitochondrial DNA phylogenetic relationships and ethnoarchaeological evidence suggest that there is a continuity beetween the pre-Neolithic humans and the present Semang and that the Neolithic humans in this area might be an ancestral group of the Senoi

    Ancient DNA analysis of food remains in human dental calculus from the Edo period, Japan.

    No full text
    Although there are many methods for reconstructing diets of the past, detailed taxon identification is still challenging, and most plants hardly remain at a site. In this study, we applied DNA metabarcoding to dental calculus of premodern Japan for the taxonomic identification of food items. DNA was extracted from 13 human dental calculi from the Unko-in site (18th-19th century) of the Edo period, Japan. Polymerase chain reaction (PCR) and sequencing were performed using a primer set specific to the genus Oryza because rice (Oryza sativa) was a staple food and this was the only member of this genus present in Japan at that time. DNA metabarcoding targeting plants, animals (meat and fish), and fungi were also carried out to investigate dietary diversity. We detected amplified products of the genus Oryza from more than half of the samples using PCR and Sanger sequencing. DNA metabarcoding enabled us to identify taxa of plants and fungi, although taxa of animals were not detected, except human. Most of the plant taxonomic groups (family/genus level) are present in Japan and include candidate species consumed as food at that time, as confirmed by historical literature. The other groups featured in the lifestyle of Edo people, such as for medicinal purposes and tobacco. The results indicate that plant DNA analysis from calculus provides information about food diversity and lifestyle habits from the past and can complement other analytical methods such as microparticle analysis and stable isotope analysis

    A study of 8,300-year-old Jomon human remains in Japan using complete mitogenome sequences obtained by next-generation sequencing

    No full text
    Ancient human remains have been assigned to their mitochondrial DNA (mtDNA) haplogroups. To obtain efficiently deep and reliable nucleotide sequences of ancient DNA of interest, we achieved target enrichment followed by next-generation sequencing (NGS). Complete mitochondrial genome (mitogenome) sequences were obtained for three human remains from the Iyai rock-shelter site of the Initial Jomon Period in Japan. All the Jomon mitogenomes belong to haplogroup N9b, but no sequences among them were identical. High genetic diversity was clarified even among the Jomon human remains belonging to haplogroup N9b, which has been described as a haplogroup representing the Jomon people
    corecore