22,340 research outputs found

    NMR relaxation and resistivity from rattling phonons in pyrochlore superconductors

    Full text link
    We calculate the temperature dependence of NMR relaxation rate and electrical resistivity for coupling to a local, strongly anharmonic phonon mode. We argue that the two-phonon Raman process is dominating NMR relaxation. Due to the strong anharmonicity of the phonon an unusual temperature dependence is found having a low temperature peak and becoming constant towards higher temperatures. The electrical resistivity is found to vary like T^2 at low temperatures and following a sqrt{T} behavior at high temperatures. Both results are in qualitative agreement with recent observations on beta-pyrochlore oxide superconductors.Comment: 4 pages, 4 figures; new version with some minor additional clarifications; accepted for publication in Phys. Rev. Let

    Density-Matrix Renormalization Group Study of Trapped Imbalanced Fermi Condensates

    Full text link
    The density-matrix renormalization group is employed to investigate a harmonically-trapped imbalanced Fermi condensate based on a one-dimensional attractive Hubbard model. The obtained density profile shows a flattened population difference of spin-up and spin-down components at the center of the trap, and exhibits phase separation between the condensate and unpaired majority atoms for a certain range of the interaction and population imabalance PP. The two-particle density matrix reveals that the sign of the order parameter changes periodically, demonstrating the realization of the Fulde-Ferrell-Larkin-Ovchinnikov phase. The minority spin atoms contribute to the quasi-condensate up to at least P0.8P \simeq 0.8. Possible experimental situations to test our predictions are discussed.Comment: 4 pages, 3 figures; added references; accepted for publication in Phys. Rev. Let

    Phonon Spectroscopy by Electric Measurements of Coupled Quantum Dots

    Full text link
    We propose phonon spectroscopy by electric measurements of the low-temperature conductance of coupled-quantum dots, specifically employing dephasing of the quantum electronic transport by the phonons. The setup we consider consists of a T-shaped double-quantum-dot (DQD) system in which only one of the dots (dot 1) is connected to external leads and the other (dot 2) is coupled solely to the first one. For noninteracting electrons, the differential conductance of such a system vanishes at a voltage located in-between the energies of the bonding and the anti-bonding states, due to destructive interference. When electron-phonon (e-ph) on the DQD is invoked, we find that, at low temperatures, phonon emission taking place on dot 1 does not affect the interference, while phonon emission from dot 2 suppresses it. The amount of this suppression, as a function of the bias voltage, follows the effective e-ph coupling reflecting the phonon density of states and can be used for phonon spectroscopy.Comment: 9 pages, 6 figure

    Nonunitary quantum circuit

    Full text link
    A quantum circuit is generalized to a nonunitary one whose constituents are nonunitary gates operated by quantum measurement. It is shown that a specific type of one-qubit nonunitary gates, the controlled-NOT gate, as well as all one-qubit unitary gates constitute a universal set of gates for the nonunitary quantum circuit, without the necessity of introducing ancilla qubits. A reversing measurement scheme is used to improve the probability of successful nonunitary gate operation. A quantum NAND gate and Abrams-Lloyd's nonlinear gate are analyzed as examples. Our nonunitary circuit can be used to reduce the qubit overhead needed to ensure fault-tolerant quantum computation.Comment: 19 pages, 6 figures; added a referenc

    Hermitian conjugate measurement

    Full text link
    We propose a new class of probabilistic reversing operations on the state of a system that was disturbed by a weak measurement. It can approximately recover the original state from the disturbed state especially with an additional information gain using the Hermitian conjugate of the measurement operator. We illustrate the general scheme by considering a quantum measurement consisting of spin systems with an experimentally feasible interaction and show that the reversing operation simultaneously increases both the fidelity to the original state and the information gain with such a high probability of success that their average values increase simultaneously.Comment: 26 pages, 4 figures; a paragraph is added in the introductio

    Reversible quantum measurement with arbitrary spins

    Full text link
    We propose a physically reversible quantum measurement of an arbitrary spin-s system using a spin-j probe via an Ising interaction. In the case of a spin-1/2 system (s=1/2), we explicitly construct a reversing measurement and evaluate the degree of reversibility in terms of fidelity. The recovery of the measured state is pronounced when the probe has a high spin (j>1/2), because the fidelity changes drastically during the reversible measurement and the reversing measurement. We also show that the reversing measurement scheme for a spin-1/2 system can serve as an experimentally feasible approximate reversing measurement for a high-spin system (s>1/2). If the interaction is sufficiently weak, the reversing measurement can recover a cat state almost deterministically in spite of there being a large fidelity change.Comment: 35 pages, 11 figures, Sec. 3.2 is adde

    Four-loop results on anomalous dimensions and splitting functions in QCD

    Full text link
    We report on recent progress on the flavour non-singlet splitting functions in perturbative QCD. The~exact four-loop (N^3LO) contribution to these functions has been obtained in the planar limit of a large number of colours. Phenomenologically sufficient approximate expressions have been obtained for the parts not exactly known so far. Both cases include results for the four-loop cusp and virtual anomalous dimensions which are relevant well beyond the evolution of non-singlet quark distributions, for which an accuracy of (well) below 1% has now been been reached.Comment: 11 pages, LaTeX (PoS style), 4 eps-figures. Contribution to the proceedings of `RADCOR 2017', St. Gilgen (Austria), September 201
    corecore