We propose a physically reversible quantum measurement of an arbitrary spin-s
system using a spin-j probe via an Ising interaction. In the case of a spin-1/2
system (s=1/2), we explicitly construct a reversing measurement and evaluate
the degree of reversibility in terms of fidelity. The recovery of the measured
state is pronounced when the probe has a high spin (j>1/2), because the
fidelity changes drastically during the reversible measurement and the
reversing measurement. We also show that the reversing measurement scheme for a
spin-1/2 system can serve as an experimentally feasible approximate reversing
measurement for a high-spin system (s>1/2). If the interaction is sufficiently
weak, the reversing measurement can recover a cat state almost
deterministically in spite of there being a large fidelity change.Comment: 35 pages, 11 figures, Sec. 3.2 is adde