14 research outputs found

    Peptidomimetic antibiotics target outer membrane biogenesis in Pseudomonas aeruginosa

    Full text link
    Antibiotics with new mechanisms of action are urgently required to combat the growing health threat posed by resistant pathogenic microorganisms. We synthesized a family of peptidomimetic antibiotics, based on the antimicrobial peptide protegrin I. Several rounds of optimization gave a lead compound that was active in the nanomolar range against gram-negative Pseudomonas sp., but was largely inactive against other Gram-negative and Gram-positive bacteria. Biochemical and genetic studies showed the peptidomimetics had a non-membrane-lytic mechanism of action and identified a homologue of the ß-barrel protein LptD (Imp/OstA), which functions in outer membrane biogenesis, as a cellular target. The peptidomimetic showed potent antimicrobial activity in a mouse septicemia infection model. Drug-resistant strains of Pseudomonas are a serious health problem, so this family of antibiotics may have important therapeutic applications

    Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis

    No full text
    Epoxides are highly useful synthons and biosynthons in the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a notably missing reaction, compared to the synthetic toolbox, is cationic rearrangement that takes place under strong acids. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Brønsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis
    corecore