209 research outputs found

    Armadillo Motifs Involved in Vesicular Transport

    Get PDF
    Armadillo (ARM) repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family

    Unusual Armadillo Fold in the Human General Vesicular Transport Factor p115

    Get PDF
    The golgin family gives identity and structure to the Golgi apparatus and is part of a complex protein network at the Golgi membrane. The golgin p115 is targeted by the GTPase Rab1a, contains a large globular head region and a long region of coiled-coil which forms an extended rod-like structure. p115 serves as vesicle tethering factor and plays an important role at different steps of vesicular transport. Here we present the 2.2 Å-resolution X-ray structure of the globular head region of p115. The structure exhibits an armadillo fold that is decorated by elongated loops and carries a C-terminal non-canonical repeat. This terminal repeat folds into the armadillo superhelical groove and allows homodimeric association with important implications for p115 mediated multiple protein interactions and tethering

    Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers

    Get PDF
    Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity

    Vectors for co-expression of an unrestricted number of proteins

    Get PDF
    A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells

    Protein crystallography with neutrons – status and perspectives

    Full text link

    Structure-Based Screening of Tetrazolylhydrazide Inhibitors versus KDM4 Histone Demethylases

    Get PDF
    Human histone demethylases are known to play an important role in the development of several tumor types. Consequently, they have emerged as important medical targets for the treatment of human cancer. Herein, structural studies on tetrazolylhydrazide inhibitors as a new scaffold for a certain class of histone demethylases, the JmjC proteins, are reported. A series of compounds are structurally described and their respective binding modes to the KDM4D protein, which serves as a high-resolution model to represent the KDM4 subfamily in crystallographic studies, are examined. Similar to previously reported inhibitors, the compounds described herein are competitors for the natural KDM4 cofactor, 2-oxoglutarate. The tetrazolylhydrazide scaffold fills an important gap in KDM4 inhibition and newly described, detailed interactions of inhibitor moieties pave the way to the development of compounds with high target-binding affinity and increased membrane permeability, at the same time

    Structural genomics of human proteins – target selection and generation of a public catalogue of expression clones

    Get PDF
    BACKGROUND: The availability of suitable recombinant protein is still a major bottleneck in protein structure analysis. The Protein Structure Factory, part of the international structural genomics initiative, targets human proteins for structure determination. It has implemented high throughput procedures for all steps from cloning to structure calculation. This article describes the selection of human target proteins for structure analysis, our high throughput cloning strategy, and the expression of human proteins in Escherichia coli host cells. RESULTS AND CONCLUSION: Protein expression and sequence data of 1414 E. coli expression clones representing 537 different proteins are presented. 139 human proteins (18%) could be expressed and purified in soluble form and with the expected size. All E. coli expression clones are publicly available to facilitate further functional characterisation of this set of human proteins

    Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5′ exonuclease-mediated nucleic acid degradation

    Get PDF
    The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3

    Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells

    Get PDF
    Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein-protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined prolinederived modules (ProMs) to succeed in developing a nanomolar inhibitor (K-d = 120 nM, MW = 734 Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the sup pression of cancer metastasis by inhibiting a crucial protein- protein interaction involved in actin filament processing and cell migration

    X-ray structure of engineered human Aortic Preferentially Expressed Protein-1 (APEG-1)

    Get PDF
    BACKGROUND: Human Aortic Preferentially Expressed Protein-1 (APEG-1) is a novel specific smooth muscle differentiation marker thought to play a role in the growth and differentiation of arterial smooth muscle cells (SMCs). RESULTS: Good quality crystals that were suitable for X-ray crystallographic studies were obtained following the truncation of the 14 N-terminal amino acids of APEG-1, a region predicted to be disordered. The truncated protein (termed ΔAPEG-1) consists of a single immunoglobulin (Ig) like domain which includes an Arg-Gly-Asp (RGD) adhesion recognition motif. The RGD motif is crucial for the interaction of extracellular proteins and plays a role in cell adhesion. The X-ray structure of ΔAPEG-1 was determined and was refined to sub-atomic resolution (0.96 Å). This is the best resolution for an immunoglobulin domain structure so far. The structure adopts a Greek-key β-sandwich fold and belongs to the I (intermediate) set of the immunoglobulin superfamily. The residues lying between the β-sheets form a hydrophobic core. The RGD motif folds into a 3(10 )helix that is involved in the formation of a homodimer in the crystal which is mainly stabilized by salt bridges. Analytical ultracentrifugation studies revealed a moderate dissociation constant of 20 μM at physiological ionic strength, suggesting that APEG-1 dimerisation is only transient in the cell. The binding constant is strongly dependent on ionic strength. CONCLUSION: Our data suggests that the RGD motif might play a role not only in the adhesion of extracellular proteins but also in intracellular protein-protein interactions. However, it remains to be established whether the rather weak dimerisation of APEG-1 involving this motif is physiogically relevant
    corecore