202 research outputs found

    Polarization Issues with High Power Injection and Low Power Emission in Fusion Experiments

    Get PDF
    All tokamak experiments using ECCD require setting of the beam elliptical polarization for proper coupling to the plasma. This is done either in the matching optics unit (MOU) at the output of the gyrotron, or in a couple of miter bends of the transmission line. Similarly, oblique ECE receivers require selection of the correct elliptical polarization to provide localized measurements. For the TCV tokamak at the CRPP, gyrotron and oblique-ECE polarizers are characterized during either high- or low- power testing of equipment: for the gyrotrons the behaviour is determined at a single frequency, but for the oblique-ECE the broadband response is needed. These characteristics are included in the calibration database and used during subsequent analysis of the power coupling to, or from, the sources (gyrotron, plasma, or low power transmitting antenna). A more detailed characterization has been carried out (at low power) with the MOU for the EU, 170GHz, 2MW, gyrotron prototype for ITER. This paper discusses the methodology and results of these measurements, as well as a review of nearly a decade's worth of experimental data from the 6 gyrotron, 3MW, 82.6GHz TCV system. In particular, the consistency between the calibrations and the subsequent data from tokamak experiments is analysed

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    First Measurements of Electron Temperature Fluctuations by Correlation ECE on Tore Supra

    Get PDF
    Electron temperature fluctuation studies can help to understand the nature of the turbulent transport in to-kamak plasmas. At Tore Supra, a 32-channel heterodyne ECE radiometer has been upgraded with two chan-nels of 100 MHz bandwidth and tunable central frequencies allowing the shift of the plasma sample volume in the radial direction. With the sufficiently large video bandwidth and the long sampling time, it is possible to reduce significantly the thermal noise and to identify "true" high frequency components up to 200 kHz from the cross-correlation between these channels. First results of temperature fluctuation measurements on Tore Supra are reported in this paper.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    First measurements of oblique ECE with a real-time moveable line-of-sight on TCV

    Get PDF
    Electron cyclotron (EC) emission (ECE) radiometers viewing perpendicular to the magnetic field are common on nearly all tokamaks for measuring the electron temperature with good spatio-temporal resolution. Two such radiometers are installed on TCV, one looking from the low field side (LFS) and the other from the high field side (HFS). The HFS radiometer is especially sensitive to non-Maxwellian emission in the presence of the strong EC current drive (ECCD) provided by the 3-MW second-harmonic (X2) EC system as the nonthermal radiation is not reabsorbed by the bulk when passing to the receiver. Simultaneous HFS and LFS measurements allow higher-order modeling of the electron distribution function as more constraints are provided by the dual measurements; however, the asymmetric nature of the electron distribution function required for ECCD to occur is not directly put in evidence by these lines of sight. Oblique ECE measurements of an asymmetric nonthermal electron distribution, on the other hand, are expected to also be asymmetric and can provide important information on the current-carrying features of the nonthermal population. A dedicated receiving antenna has been installed allowing real-time swept oblique ECE on TCV in both the co- and counter-looking directions. Proof-of-principle experiments are described in which Doppler-shifted emission is measured

    Radial localization of electron temperature pedestal and ELM-like events using ECE measurements at Wendelstein 7-X

    Get PDF
    A magnetic configuration scan was performed at Wendelstein 7-X stellarator by varying the rotational transform to analyze the plasma confinement for magnetic configurations with different edge magnetic island locations and sizes. For the magnetic configurations, where the 5/5 island chain was moved inside the last closed flux surface, it was observed with electron cyclotron emission measurements that an electron temperature, Te, pedestal develops in the plasma buildup phase and followed by the edge localized mode (ELM)-like crashes. From the mapping of the island to the plasma radius from HINT equilibrium, it was found that the Te pedestal is formed at the island location on the high field side of the plasma. The ELM-like crashes occur at the location of the pedestal and the transport barrier is broken typically with an energy loss of 3-4% during a single ELM-like event. The frequency and the amplitude of the ELM-like crashes were observed to be changing with island size, plasma heating power and density. Additionally during the plasma decay, after the heating was switched-off, a transition to degraded plasma confinement state was observed with changed Te profile gradients, faster decay rate of diamagnetic energy, and increased H-alpha levels
    • …
    corecore