71 research outputs found

    Systematic Identification of Balanced Transposition Polymorphisms in Saccharomyces cerevisiae

    Get PDF
    High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism

    Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations

    Get PDF
    To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping

    BAC-pool sequencing and analysis of large segments of A12 and D12 homoeologous chromosomes in upland cotton.

    Get PDF
    Acknowledgments “Dedicated to Dr. Ramesh Kantety, a mentor, colleague and friend”. We would like to acknowledge the support offered by Padmini Sripathi during data analysis and submissions. Author Contributions Conceived and designed the experiments: RVK JZY. Performed the experiments: RB ZX SM GBW. Analyzed the data: RB. Contributed reagents/materials/analysis tools: RVK RB JZY RJK BAR. Wrote the manuscript: RB. Revised the manuscript: RB RVK JZY RGP BAR GCS. Advised the research: RVK JZY RGP BAR GCS.Author Contributions Conceived and designed the experiments: RVK JZY. Performed the experiments: RB ZX SM GBW. Analyzed the data: RB. Contributed reagents/materials/analysis tools: RVK RB JZY RJK BAR. Wrote the manuscript: RB. Revised the manuscript: RB RVK JZY RGP BAR GCS. Advised the research: RVK JZY RGP BAR GCS.Although new and emerging next-generation sequencing (NGS) technologies have reduced sequencing costs significantly, much work remains to implement them for de novo sequencing of complex and highly repetitive genomes such as the tetraploid genome of Upland cotton (Gossypium hirsutum L.). Herein we report the results from implementing a novel, hybrid Sanger/454-based BAC-pool sequencing strategy using minimum tiling path (MTP) BACs from Ctg-3301 and Ctg-465, two large genomic segments in A12 and D12 homoeologous chromosomes (Ctg). To enable generation of longer contig sequences in assembly, we implemented a hybrid assembly method to process ~35x data from 454 technology and 2.8-3x data from Sanger method. Hybrid assemblies offered higher sequence coverage and better sequence assemblies. Homology studies revealed the presence of retrotransposon regions like Copia and Gypsy elements in these contigs and also helped in identifying new genomic SSRs. Unigenes were anchored to the sequences in Ctg-3301 and Ctg-465 to support the physical map. Gene density, gene structure and protein sequence information derived from protein prediction programs were used to obtain the functional annotation of these genes. Comparative analysis of both contigs with Arabidopsis genome exhibited synteny and microcollinearity with a conserved gene order in both genomes. This study provides insight about use of MTP-based BAC-pool sequencing approach for sequencing complex polyploid genomes with limited constraints in generating better sequence assemblies to build reference scaffold sequences. Combining the utilities of MTP-based BAC-pool sequencing with current longer and short read NGS technologies in multiplexed format would provide a new direction to cost-effectively and precisely sequence complex plant genomes.Yeshttp://www.plosone.org/static/editorial#pee

    Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
    corecore