35 research outputs found

    Physics-based motion planning for grasping and manipulation

    Get PDF
    This thesis develops a series of knowledge-oriented physics-based motion planning algorithms for grasping and manipulation in cluttered an uncertain environments. The main idea is to use high-level knowledge-based reasoning to define the manipulation constraints that define the way how robot should interact with the objects in the environment. These interactions are modeled by incorporating the physics-based model of rigid body dynamics in planning. The first part of the thesis is focused on the techniques to integrate the knowledge with physics-based motion planning. The knowledge is represented in terms of ontologies, a prologbased knowledge inference process is introduced that defines the manipulation constraints. These constraints are used in the state validation procedure of sampling-based kinodynamic motion planners. The state propagator of the motion planner is replaced by a physics-engine that takes care of the kinodynamic and physics-based constraints. To make the interaction humanlike, a low-level physics-based reasoning process is introduced that dynamically varies the control bounds by evaluating the physical properties of the objects. As a result, power efficient motion plans are obtained. Furthermore, a framework has been presented to incorporate linear temporal logic within physics-based motion planning to handle complex temporal goals. The second part of this thesis develops physics-based motion planning approaches to plan in cluttered and uncertain environments. The uncertainty is considered in 1) objects’ poses due to sensing and due to complex robot-object or object-object interactions; 2) uncertainty in the contact dynamics (such as friction coefficient); 3) uncertainty in robot controls. The solution is framed with sampling-based kinodynamic motion planners that solve the problem in open-loop, i.e., it considers uncertainty while planning and computes the solution in such a way that it successfully moves the robot from the start to the goal configuration even if there is uncertainty in the system. To implement the above stated approaches, a knowledge-oriented physics-based motion planning tool is presented. It is developed by extending The Kautham Project, a C++ based tool for sampling-based motion planning. Finally, the current research challenges and future research directions to extend the above stated approaches are discussedEsta tesis desarrolla una serie de algoritmos de planificación del movimientos para la aprehensión y la manipulación de objetos en entornos desordenados e inciertos, basados en la física y el conocimiento. La idea principal es utilizar el razonamiento de alto nivel basado en el conocimiento para definir las restricciones de manipulación que definen la forma en que el robot debería interactuar con los objetos en el entorno. Estas interacciones se modelan incorporando en la planificación el modelo dinámico de los sólidos rígidos. La primera parte de la tesis se centra en las técnicas para integrar el conocimiento con la planificación del movimientos basada en la física. Para ello, se representa el conocimiento mediante ontologías y se introduce un proceso de razonamiento basado en Prolog para definir las restricciones de manipulación. Estas restricciones se usan en los procedimientos de validación del estado de los algoritmos de planificación basados en muestreo, cuyo propagador de estado se susituye por un motor basado en la física que tiene en cuenta las restricciones físicas y kinodinámicas. Además se ha implementado un proceso de razonamiento de bajo nivel que permite adaptar los límites de los controles aplicados a las propiedades físicas de los objetos. Complementariamente, se introduce un marco de desarrollo para la inclusión de la lógica temporal lineal en la planificación de movimientos basada en la física. La segunda parte de esta tesis extiende el enfoque a planificación del movimiento basados en la física en entornos desordenados e inciertos. La incertidumbre se considera en 1) las poses de los objetos debido a la medición y a las interacciones complejas robot-objeto y objeto-objeto; 2) incertidumbre en la dinámica de los contactos (como el coeficiente de fricción); 3) incertidumbre en los controles del robot. La solución se enmarca en planificadores kinodinámicos basados en muestro que solucionan el problema en lazo abierto, es decir que consideran la incertidumbre en la planificación para calcular una solución robusta que permita mover al robot de la configuración inicial a la final a pesar de la incertidumbre. Para implementar los enfoques mencionados anteriormente, se presenta una herramienta de planificación del movimientos basada en la física y guiada por el conocimiento, desarrollada extendiendo The Kautham Project, una herramienta implementada en C++ para la planificación de movimientos basada en muestreo. Finalmente, de discute los retos actuales y las futuras lineas de investigación a seguir para extender los enfoques presentados

    Physics-based motion planning for grasping and manipulation

    Get PDF
    This thesis develops a series of knowledge-oriented physics-based motion planning algorithms for grasping and manipulation in cluttered an uncertain environments. The main idea is to use high-level knowledge-based reasoning to define the manipulation constraints that define the way how robot should interact with the objects in the environment. These interactions are modeled by incorporating the physics-based model of rigid body dynamics in planning. The first part of the thesis is focused on the techniques to integrate the knowledge with physics-based motion planning. The knowledge is represented in terms of ontologies, a prologbased knowledge inference process is introduced that defines the manipulation constraints. These constraints are used in the state validation procedure of sampling-based kinodynamic motion planners. The state propagator of the motion planner is replaced by a physics-engine that takes care of the kinodynamic and physics-based constraints. To make the interaction humanlike, a low-level physics-based reasoning process is introduced that dynamically varies the control bounds by evaluating the physical properties of the objects. As a result, power efficient motion plans are obtained. Furthermore, a framework has been presented to incorporate linear temporal logic within physics-based motion planning to handle complex temporal goals. The second part of this thesis develops physics-based motion planning approaches to plan in cluttered and uncertain environments. The uncertainty is considered in 1) objects’ poses due to sensing and due to complex robot-object or object-object interactions; 2) uncertainty in the contact dynamics (such as friction coefficient); 3) uncertainty in robot controls. The solution is framed with sampling-based kinodynamic motion planners that solve the problem in open-loop, i.e., it considers uncertainty while planning and computes the solution in such a way that it successfully moves the robot from the start to the goal configuration even if there is uncertainty in the system. To implement the above stated approaches, a knowledge-oriented physics-based motion planning tool is presented. It is developed by extending The Kautham Project, a C++ based tool for sampling-based motion planning. Finally, the current research challenges and future research directions to extend the above stated approaches are discussedEsta tesis desarrolla una serie de algoritmos de planificación del movimientos para la aprehensión y la manipulación de objetos en entornos desordenados e inciertos, basados en la física y el conocimiento. La idea principal es utilizar el razonamiento de alto nivel basado en el conocimiento para definir las restricciones de manipulación que definen la forma en que el robot debería interactuar con los objetos en el entorno. Estas interacciones se modelan incorporando en la planificación el modelo dinámico de los sólidos rígidos. La primera parte de la tesis se centra en las técnicas para integrar el conocimiento con la planificación del movimientos basada en la física. Para ello, se representa el conocimiento mediante ontologías y se introduce un proceso de razonamiento basado en Prolog para definir las restricciones de manipulación. Estas restricciones se usan en los procedimientos de validación del estado de los algoritmos de planificación basados en muestreo, cuyo propagador de estado se susituye por un motor basado en la física que tiene en cuenta las restricciones físicas y kinodinámicas. Además se ha implementado un proceso de razonamiento de bajo nivel que permite adaptar los límites de los controles aplicados a las propiedades físicas de los objetos. Complementariamente, se introduce un marco de desarrollo para la inclusión de la lógica temporal lineal en la planificación de movimientos basada en la física. La segunda parte de esta tesis extiende el enfoque a planificación del movimiento basados en la física en entornos desordenados e inciertos. La incertidumbre se considera en 1) las poses de los objetos debido a la medición y a las interacciones complejas robot-objeto y objeto-objeto; 2) incertidumbre en la dinámica de los contactos (como el coeficiente de fricción); 3) incertidumbre en los controles del robot. La solución se enmarca en planificadores kinodinámicos basados en muestro que solucionan el problema en lazo abierto, es decir que consideran la incertidumbre en la planificación para calcular una solución robusta que permita mover al robot de la configuración inicial a la final a pesar de la incertidumbre. Para implementar los enfoques mencionados anteriormente, se presenta una herramienta de planificación del movimientos basada en la física y guiada por el conocimiento, desarrollada extendiendo The Kautham Project, una herramienta implementada en C++ para la planificación de movimientos basada en muestreo. Finalmente, de discute los retos actuales y las futuras lineas de investigación a seguir para extender los enfoques presentados.Postprint (published version

    Integrated task and motion planning using physics-based heuristics

    Get PDF
    —This work presents a knowledge-based task and motion planning framework based on a version of the FastForward task planner. A reasoning process on symbolic literals in terms of knowledge and geometric information about the workspace, together with the use of a physics-based motion planner, is proposed to evaluate the applicability and feasibility of manipulation actions and to compute the heuristic values that guide the search. The proposal results in low-cost physically-feasible plansPeer ReviewedPostprint (published version

    Knowledge-oriented task and motion planning for multiple mobile robots

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of experimental and theoretical artificial intelligence, published online: 30 Nov 2018 available online: https://www.tandfonline.com/doi/abs/10.1080/0952813X.2018.1544280Robotic systems composed of several mobile robots moving in human environments pose several problems at perception, planning and control levels. In these environments, there may be obstacles obstructing the paths, which robots can remove by pushing or pulling them. At planning level, therefore, an efficient combination of task and motion planning is required. Even more if we assume a cooperative system in which robots can collaborate with each other by e.g. pushing together a heavy obstacle or by one robot clearing the way to another one. In this paper, we cope with this problem by proposing ¿-TMP, a smart combination of an heuristic task planner based on the Fast Forward method, a physics-based motion planner, and reasoning processes over the ontologies that code the knowledge on the problem. The significance of the proposal relies on how geometric and physics information is used within the computation of the heuristics in order to guide the symbolic search, i.e. how an artificial intelligence planning method is combined with low-level motion planning to achieve a feasible sequence of actions (composed of collision-free motions plus physically-feasible push/pull actions). The proposal has been validated with several simulated scenarios (using up to five robots that need to collaborate with each other to reach the goal state), showing how the method is able to solve challenging situations and also find an efficient solution in terms of power.Peer ReviewedPostprint (author's final draft

    PMK : a knowledge processing framework for autonomous robotics perception and manipulation

    Get PDF
    Autonomous indoor service robots are supposed to accomplish tasks, like serve a cup, which involve manipulation actions. Particularly, for complex manipulation tasks which are subject to geometric constraints, spatial information and a rich semantic knowledge about objects, types, and functionality are required, together with the way in which these objects can be manipulated. In this line, this paper presents an ontological-based reasoning framework called Perception and Manipulation Knowledge (PMK) that includes: (1) the modeling of the environment in a standardized way to provide common vocabularies for information exchange in human-robot or robot-robot collaboration, (2) a sensory module to perceive the objects in the environment and assert the ontological knowledge, (3) an evaluation-based analysis of the situation of the objects in the environment, in order to enhance the planning of manipulation tasks. The paper describes the concepts and the implementation of PMK, and presents an example demonstrating the range of information the framework can provide for autonomous robots.Peer ReviewedPostprint (published version

    A tool for knowledge-oriented physics-based motion planning and simulation

    Get PDF
    The book covers a variety of topics in Information and Communications Technology (ICT) and their impact on innovation and business. The authors discuss various innovations, business and industrial motivations, and impact on humans and the interplay between those factors in terms of finance, demand, and competition. Topics discussed include the convergence of Machine to Machine (M2M), Internet of Things (IoT), Social, and Big Data. They also discuss AI and its integration into technologies from machine learning, predictive analytics, security software, to intelligent agents, and many more. Contributions come from academics and professionals around the world. Covers the most recent practices in ICT related topics pertaining to technological growth, innovation, and business; Presents a survey on the most recent technological areas revolutionizing how humans communicate and interact; Features four sections: IoT, Wireless Ad Hoc & Sensor Networks, Fog Computing, and Big Data Analytics.(Chapter) The recent advancements in robotic systems set new challenges for robotic simulation software, particularly for planning. It requires the realistic behavior of the robots and the objects in the simulation environment by incorporating their dynamics. Furthermore, it requires the capability of reasoning about the action effects. To cope with these challenges, this study proposes an open-source simulation tool for knowledge-oriented physics-based motion planning by extending The Kautham Project, a C++ based open-source simulation tool for motion planning. The proposed simulation tool provides a flexible way to incorporate the physics, knowledge and reasoning in planning process. Moreover, it provides ROS-based interface to handle the manipulation actions (such as push/pull) and an easy way to communicate with the real robotsPeer ReviewedPostprint (author's final draft

    Planning grasping motions for humanoid robots

    Get PDF
    This paper addresses the problem of obtaining the required motions for a humanoid robot to perform grasp actions trying to mimic the coordinated hand–arm movements humans do. The first step is the data acquisition and analysis, which consists in capturing human movements while grasping several everyday objects (covering four possible grasp types), mapping them to the robot and computing the hand motion synergies for the pre-grasp and grasp phases (per grasp type). Then, the grasp and motion synthesis step is done, which consists in generating potential grasps for a given object using the four family types, and planning the motions using a bi-directional multi-goal sampling-based planner, which efficiently guides the motion planning following the synergies in a reduced search space, resulting in paths with human-like appearance. The approach has been tested in simulation, thoroughly compared with other state-of-the-art planning algorithms obtaining better results, and also implemented in a real robot.Peer ReviewedPostprint (author's final draft

    Physics-based motion planning for grasping and manipulation

    No full text
    This thesis develops a series of knowledge-oriented physics-based motion planning algorithms for grasping and manipulation in cluttered an uncertain environments. The main idea is to use high-level knowledge-based reasoning to define the manipulation constraints that define the way how robot should interact with the objects in the environment. These interactions are modeled by incorporating the physics-based model of rigid body dynamics in planning. The first part of the thesis is focused on the techniques to integrate the knowledge with physics-based motion planning. The knowledge is represented in terms of ontologies, a prologbased knowledge inference process is introduced that defines the manipulation constraints. These constraints are used in the state validation procedure of sampling-based kinodynamic motion planners. The state propagator of the motion planner is replaced by a physics-engine that takes care of the kinodynamic and physics-based constraints. To make the interaction humanlike, a low-level physics-based reasoning process is introduced that dynamically varies the control bounds by evaluating the physical properties of the objects. As a result, power efficient motion plans are obtained. Furthermore, a framework has been presented to incorporate linear temporal logic within physics-based motion planning to handle complex temporal goals. The second part of this thesis develops physics-based motion planning approaches to plan in cluttered and uncertain environments. The uncertainty is considered in 1) objects’ poses due to sensing and due to complex robot-object or object-object interactions; 2) uncertainty in the contact dynamics (such as friction coefficient); 3) uncertainty in robot controls. The solution is framed with sampling-based kinodynamic motion planners that solve the problem in open-loop, i.e., it considers uncertainty while planning and computes the solution in such a way that it successfully moves the robot from the start to the goal configuration even if there is uncertainty in the system. To implement the above stated approaches, a knowledge-oriented physics-based motion planning tool is presented. It is developed by extending The Kautham Project, a C++ based tool for sampling-based motion planning. Finally, the current research challenges and future research directions to extend the above stated approaches are discussedEsta tesis desarrolla una serie de algoritmos de planificación del movimientos para la aprehensión y la manipulación de objetos en entornos desordenados e inciertos, basados en la física y el conocimiento. La idea principal es utilizar el razonamiento de alto nivel basado en el conocimiento para definir las restricciones de manipulación que definen la forma en que el robot debería interactuar con los objetos en el entorno. Estas interacciones se modelan incorporando en la planificación el modelo dinámico de los sólidos rígidos. La primera parte de la tesis se centra en las técnicas para integrar el conocimiento con la planificación del movimientos basada en la física. Para ello, se representa el conocimiento mediante ontologías y se introduce un proceso de razonamiento basado en Prolog para definir las restricciones de manipulación. Estas restricciones se usan en los procedimientos de validación del estado de los algoritmos de planificación basados en muestreo, cuyo propagador de estado se susituye por un motor basado en la física que tiene en cuenta las restricciones físicas y kinodinámicas. Además se ha implementado un proceso de razonamiento de bajo nivel que permite adaptar los límites de los controles aplicados a las propiedades físicas de los objetos. Complementariamente, se introduce un marco de desarrollo para la inclusión de la lógica temporal lineal en la planificación de movimientos basada en la física. La segunda parte de esta tesis extiende el enfoque a planificación del movimiento basados en la física en entornos desordenados e inciertos. La incertidumbre se considera en 1) las poses de los objetos debido a la medición y a las interacciones complejas robot-objeto y objeto-objeto; 2) incertidumbre en la dinámica de los contactos (como el coeficiente de fricción); 3) incertidumbre en los controles del robot. La solución se enmarca en planificadores kinodinámicos basados en muestro que solucionan el problema en lazo abierto, es decir que consideran la incertidumbre en la planificación para calcular una solución robusta que permita mover al robot de la configuración inicial a la final a pesar de la incertidumbre. Para implementar los enfoques mencionados anteriormente, se presenta una herramienta de planificación del movimientos basada en la física y guiada por el conocimiento, desarrollada extendiendo The Kautham Project, una herramienta implementada en C++ para la planificación de movimientos basada en muestreo. Finalmente, de discute los retos actuales y las futuras lineas de investigación a seguir para extender los enfoques presentados

    k-PMP: enhancing physics-based motion planners with knowledge-based reasoning

    No full text
    Physics-based motion planning is a challenging task, since it requires the computation of the robot motions while allowing possible interactions with (some of) the obstacles in the environment. Kinodynamic motion planners equipped with a dynamic engine acting as state propagator are usually used for that purpose. The difficulties arise in the setting of the adequate forces for the interactions and because these interactions may change the pose of the manipulatable obstacles, thus either facilitating or preventing the finding of a solution path. The use of knowledge can alleviate the stated difficulties. This paper proposes the use of an enhanced state propagator composed of a dynamic engine and a low-level geometric reasoning process that is used to determine how to interact with the objects, i.e. from where and with which forces. The proposal, called ¿-PMP can be used with any kinodynamic planner, thus giving rise to e.g. ¿-RRT. The approach also includes a preprocessing step that infers from a semantic abstract knowledge described in terms of an ontology the manipulation knowledge required by the reasoning process. The proposed approach has been validated with several examples involving an holonomic mobile robot, a robot with differential constraints and a serial manipulator, and benchmarked using several state-of-the art kinodynamic planners. The results showed a significant difference in the power consumption with respect to simple physics-based planning, an improvement in the success rate and in the quality of the solution paths.Peer ReviewedPostprint (author's final draft

    Knowledge-Oriented Physics-Based Motion Planning for Grasping Under Uncertainty

    No full text
    Grasping an object in unstructured and uncertain environments is a challenging task, particularly when a collision-free trajectory does not exits. High-level knowledge and reasoning processes, as well as the allowing of interaction between objects, can enhance the planning efficiency in such environments. In this direction, this study proposes a knowledge-oriented physics-based motion planning approach for a hand-arm system that uses a high-level knowledge-based reasoning to partition the workspace into regions to both guide the planner and reason about the result of the dynamical interactions between rigid bodies. The proposed planner is a kinodynamic RRT that uses a region-biased state sampling strategy and a smart validity checker that takes into account uncertainty in the pose of the objects. Complex dynamical interactions along with possible physics-based constraints such as friction and gravity are handled by a physics engine that is used as the RRT state propagator. The proposal is validated for different scenarios in simulation and in a real environment using a 7-degree-of-freedom KUKA Lightweight robot equipped with a two-finger gripper. The results show a significant improvement in the success rate of the execution of the computed plan in the presence of object pose uncertainty.Peer ReviewedPostprint (published version
    corecore