167 research outputs found

    Case study on microphysical properties of boundary layer mixed-phase cloud observed at Ny-Ålesund, Svalbard: Observed cloud microphysics and calculated optical properties on 9 June 2011

    Get PDF
    AbstractCloud radiation interactions are important in the global climate system. However, an understanding of mixed-phase boundary layer clouds in the Arctic remains poor. During May–June 2011, ground-based in situ measurements were made at Zeppelin Station, operated by the Norwegian Polar Institute (altitude 474 m) in Ny-Ålesund (78.9°N, 11.9°E), Svalbard. The instruments used comprised a Cloud, Aerosol and Precipitation Spectrometer (CAPS), and a Cloud Particle Microscope imager. The CAPS incorporated a Cloud and Aerosol Spectrometer and Cloud Imaging Probe (CIP). During the observation period, clouds associated with cyclonic disturbances and those associated with outbreaks of westerly cold air masses from the sea were observed. Atmospheric temperature during all measurements ranged from 0 to −5 °C. In every case, columns were the major type of ice particle measured by the CAPS–CIP. Cloud microphysical properties were observed continuously on 9 June 2011. Size spectra, liquid/ice water content, and particle effective size changed depending on progress stages. Based on the observed microphysics, optical properties were calculated and investigated. Optical properties were determined mainly by those of liquid water particles, even during periods when the relative contribution of ice particles to total water content was at the maximum. It was confirmed that the wavelength region of 1.6 and 2.2 μm can be used in remote sensing. This study shows that it is possible to measure detailed changes of cloud properties in the Arctic region by using instruments installed at a ground-based mountain station

    H1.X with different properties from other linker histones is required for mitotic progression

    Get PDF
    AbstractWe report here the characterization of H1.X, a human histone H1 subtype. We demonstrate that H1.X accumulates in the nucleolus during interphase and is distributed at the chromosome periphery during mitosis. In addition, the results of fluorescence recovery after photobleaching indicate that the exchange of H1.X on and off chromatin is faster than that of the other H1 subtypes. Furthermore, RNA interference experiments reveal that H1.X is required for chromosome alignment and segregation. Our results suggest that H1.X has important functions in mitotic progression, which are different from those of the other H1 subtypes

    The nuclear scaffold protein SAF-A is required for kinetochore-microtubule attachment and contributes to the targeting of Aurora-A to mitotic spindles

    Full text link
    Ma N., Matsunaga S., Morimoto A., et al. The nuclear scaffold protein SAF-A is required for kinetochore-microtubule attachment and contributes to the targeting of Aurora-A to mitotic spindles. Journal of Cell Science, 124, 3, 394. https://doi.org/10.1242/jcs.063347

    Field experiment of mixed-phase clouds with Cloud Particle Microscope

    Get PDF
    第2回極域科学シンポジウム/第34回気水圏シンポジウム 11月14日(月) 統計数理研究所 セミナー室

    Preliminary results from the May-June 2011 field experiment of mixed-phase clouds in Ny-Alesund, Svalbard

    Get PDF
    第2回極域科学シンポジウム/第34回気水圏シンポジウム 11月14日(月) 統計数理研究所 セミナー室

    PHB2 Protects Sister-Chromatid Cohesion in Mitosis

    Get PDF
    SummaryCohesion between sister chromatids is essential for proper chromosome segregation in mitosis. In vertebrate mitotic cells, most cohesin is removed from the chromosome arms [1–4], but centromeric cohesin is protected by shugoshin until the onset of anaphase [5]. However, the mechanism of this protection of centromeric cohesion is not well understood. Here, we demonstrate that prohibitin 2 (PHB2) is involved in the regulation of sister-chromatid cohesion during mitosis in HeLa cells. PHB2 is an evolutionarily conserved protein in eukaryotes and has multiple functions, such as transcriptional regulation and cell viability and development [6–8]. However, its functions in mitosis have not yet been determined. We show that depletion of PHB2 by RNA interference (RNAi) causes premature sister-chromatid separation and defects in chromosome congression accompanied by mitotic arrest by spindle-checkpoint activation. In the absence of PHB2, cohesin is dissociated from centromeres during early mitosis, although the centromeric localization of shugoshin is preserved. Thus, our findings suggest that, in addition to the shugoshin, PHB2 is also required to protect the centromeric cohesion from phosphorylation by Plk1 during early mitosis and that its function is essential for proper mitotic progression

    Expansion Velocity of Ejecta in Tycho's Supernova Remnant Measured by Doppler Broadened X-ray Line Emission

    Full text link
    We show that the expansion of ejecta in Tycho's supernova remnant (SNR) is consistent with a spherically symmetric shell, based on Suzaku measurements of the Doppler broadened X-ray emission lines. All the strong K_alpha line emission show broader widths at the center than at the rim, while the centroid energies are constant across the remnant (except for Ca). This is the pattern expected for Doppler broadening due to expansion of the SNR ejecta in a spherical shell. To determine the expansion velocities of the ejecta, we applied a model for each emission line feature having two Gaussian components separately representing red- and blue-shifted gas, and inferred the Doppler velocity difference between these two components directly from the fitted centroid energy difference. Taking into account the effect of projecting a three-dimensional shell to the plane of the detector, we derived average spherical expansion velocities independently for the K_alpha emission of Si, S, Ar, and Fe, and K_beta of Si. We found that the expansion velocities of Si, S, and Ar ejecta of 4700+/-100 km/s are distinctly higher than that obtained from Fe K_alpha emission, 4000+/-300 km/s, which is consistent with segregation of the Fe in the inner ejecta. Combining the observed ejecta velocities with the ejecta proper-motion measurements by Chandra, we derived a distance to the Tycho's SNR of 4+/-1 kpc.Comment: Accepted to Apj, 25 pages, 7 figures, 5 table
    corecore