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Abstract We report here the characterization of H1.X, a hu-
man histone H1 subtype. We demonstrate that H1.X accumu-
lates in the nucleolus during interphase and is distributed at
the chromosome periphery during mitosis. In addition, the results
of fluorescence recovery after photobleaching indicate that the
exchange of H1.X on and off chromatin is faster than that of
the other H1 subtypes. Furthermore, RNA interference experi-
ments reveal that H1.X is required for chromosome alignment
and segregation. Our results suggest that H1.X has important
functions in mitotic progression, which are different from those
of the other H1 subtypes.
� 2007 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

Histone H1 stabilizes chromatin structure by binding close

to the entry–exit sites of linker DNA [1] and is thought to be

important for chromatin condensation and the chromatin

higher structure. In fact, depletion of histone H1 leads to struc-

tural and functional defects of chromosomes [2,3] and affects

proper embryonic development [4]. In mammals, 10 H1 sub-

types have been reported to date, i.e., H1.1–H1.5 [5,6], H1�
[7], H1.t [8], H1Foo [9], HILS1 [10] and H1.X [11].

Our previous studies of human metaphase chromosomes

indicated that H1.X is a structural component of chromo-

somes [12,13]. H1.X expression is commonly detected through-

out human tissues [11]. Its amino acid sequence does not show

high similarities with the other somatic histone H1 subtypes

(�30%), although it does possess some of the characteristic

features of linker histones [14]. In addition, H1.X is partially

associated with nucleosomes and enriched in micrococcal

nuclease-resistant chromatin [15].
Abbreviations: RNAi, RNA interference; siRNA, small interfering
RNA; GFP, green fluorescent protein; FRAP, fluorescence recovery
after photobleaching; DAPI, 40, 6-diamidino-2-phenylindole; NEBD,
nuclear envelope breakdown

*Corresponding author. Fax: +81 6 6879 7442.
E-mail address: kfukui@bio.eng.osaka-u.ac.jp (K. Fukui).

0014-5793/$32.00 � 2007 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2007.06.076
In the present study, we analyzed the function of H1.X in

mitosis, since the biological functions of H1.X have not yet

been elucidated. We demonstrate by fluorescence recovery

after photobleaching (FRAP) and RNA interference (RNAi)

analyses that H1.X has distinct properties from the other H1

subtypes that are essential for mitotic progression.
2. Materials and methods

2.1. Cells and transfection
HeLa cells were grown in Dulbecco’s modified Eagle’s medium

(GIBCO BRL) supplemented with 10% fetal bovine serum (Equi-
tech-Bio Inc.). For construction of a cell line stably expressing
GFP-H1.X, a cDNA of H1.X was inserted into a pEGFP-C1 vector
(Clontech), and the resulting plasmid encoding H1.X-GFP was trans-
fected into HeLa cells using the FuGene6 reagent (Roche). A GFP-
tagged expression vector for H1.2 visualization was constructed by
integration of a human H1.2 cDNA into pEGFP-C1.

2.2. Antibodies
The primary antibodies used were: anti-H1.X rabbit polyclonal (Ab-

cam), 1:200 dilution; anti-nucleolin mouse monoclonal (Upstate Bio-
technology), 1:50 dilution; anti-a-tubulin mouse monoclonal
(Calbiochem), 1:100 dilution; anti-c-tubulin rabbit polyclonal (Sigma),
1:2000 dilution; anti-Bub1 mouse monoclonal (MBL), 1:20 dilution;
anti-BubR1 mouse monoclonal (BD Transduction Laboratories),
1:1000 dilution; anti-MAD2 rabbit polyclonal (Covance), 1:100 dilu-
tion; and CREST (Cortex Biochem), 1:1000 dilution.

2.3. RNAi
A small interfering RNA (siRNA) duplex for H1.X (5 0-CCAA-

GAAGGUUCCGUGGUUTT-3 0) was chemically synthesized and
HeLa cells were transfected with 120 nM of the siRNA duplex using
Lipofectamine 2000 (Invitrogen), according to the manufacturer’s
instructions. A control siRNA duplex (5 0-UUCUCCGAACGU
GUCACGUTT-3 0; Qiagen) was used for control transfections.
Cells were collected at 48 h after transfection and used for further anal-
ysis.

2.4. Immunofluorescence microscopy
HeLa cells grown on coverslips were fixed with 4% paraformalde-

hyde in PBS (pH 7.4) for 15 min at 37 �C, and then permeabilized with
0.2% Triton X-100 in PBS for 10 min at room temperature. After incu-
bation with 1% BSA-PBS for 15 min, the cells were incubated with a
primary antibody for 1 h at room temperature, followed by incubation
with an appropriate secondary antibody for 1 h. The secondary anti-
bodies (labeled with Alexa 488 or TRITC) were used at a dilution of
1:200. After washing, the cells were stained with 1 lg/ml 4 0,6-diami-
dino-2-phenylindole (DAPI) and observed under an Axioplan II imag-
ing fluorescence microscope (Carl Zeiss). Deconvoluted images were
captured with a cooled CCD camera (CH 350/L; Roper Scientific)
using an IX-70 microscope (Olympus) and analyzed using the Delta vi-
sion software (Applied Precision).
blished by Elsevier B.V. All rights reserved.
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Metaphase chromosome spreads were prepared as described previ-
ously [12].

2.5. FRAP analysis
FRAP analysis was performed using an IX-71 inverted microscope

(Olympus) equipped with an FV300 scanning unit. First, a single image
was captured by the 488 nm-line of a 10 mW-argon laser (set to 1%)
Fig. 1. Mitotic defects in H1.X-depleted cells and localization of H1.X durin
was confirmed by immunoblotting. The expression of a-tubulin was used as a
calculated after immunostaining with an anti-a-tubulin antibody. The mit
calculated. n = 5; >1000 cells were counted. (C) Chromosome aberrations w
lagging chromosomes. (D) HeLa cells were fixed with 4% paraformaldehyd
phases. DNA was stained with DAPI (blue). Bar, 5 lm. (E) The nucleola
nucleolin (red). Bar, 5 lm. (F) Localization of H1.X to the chromosome pe
(green) and anti-nucleolin (red) antibodies. Bar, 1 lm. (G) Typical metaphas
with DAPI (blue) and an anti-H1.X antibody (green). Bar, 5 lm.
and then a selected area (2.3 · 2.3 lm2) was bleached by the 488 nm-
line of the argon laser (set to 40%). After 3 s of photobleaching, images
were captured using the same scanning settings as above at intervals of
1.1 s (GFP-H1.X) or 20 s (GFP-H1.2). The relative intensities were cal-
culated as follows:

Relative intensity ¼ ðI t=W tÞ=ðI0=W 0Þ
g the cell cycle. (A) Efficient repression of H1.X after RNAi treatment
control. (B) The mitotic indexes in control and H1.X RNAi cells were

otic index in H1.X and Aurora B double-knockdown cells was also
ere categorized into three groups: misalignment, non-alignment and

e and stained with an anti-H1.X antibody (green) at different mitotic
r localization of H1.X (green) was confirmed by counterstaining for
riphery. Metaphase chromosome spreads were stained with anti-H1.X
e chromosome images in control and H1.X RNAi mitotic cells stained
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where I0 is the average intensity in the region of interest before photo-
bleaching, It is the average intensity in the region of interest at time
point t, W0 is the average intensity in both photobleached and non-
photobleached regions before photobleaching and Wt is the average
intensity in both photobleached and non-photobleached regions at
time point t. The t1/2 value was defined as the time required to reach
half-maximum recovery and calculated from the corrected recovery
curves.
3. Results

3.1. H1.X is required for accurate mitotic progression

To examine the biological function of H1.X, we performed

RNAi of H1.X. Immunoblot and immunofluorescence analy-

ses revealed that the abundance of H1.X was greatly decreased

(Fig. 1A, E and G). The specificity of the anti-H1.X antibody

used in this study was confirmed by immunoblotting

(Fig. S1A). Furthermore, H1.X depletion had no influence

on the expression of H1.2 (Fig. S1F). As shown in Fig. 1B,

the mitotic index was elevated to 8.0 ± 1.2% in H1.X RNAi

cells, compared to 4.9 ± 1.0% in control RNAi cells

(p < 0.05). In H1.X-depleted cells, chromosome condensation

occurred normally, and there was no influence on the localiza-

tions of known chromosomal proteins, namely hCAPE, topo-

isomerase IIa, CENPA, CENPE and CENPF (Fig. S2).

However, chromosome alignment at the metaphase plate was

impaired by H1.X depletion (Fig. 1C and G). We categorized

the defects in chromosome alignment into the following two

groups: misalignment chromosomes (1–10 chromosomes were

not aligned at the metaphase plate, whereas the majority of

the chromosomes were aligned) and non-alignment chromo-
Fig. 2. H1.X dynamics during the cell cycle. (A) Comparison of the loca
throughout the cell cycle. Bar, 5 lm. (B) FRAP recovery curves for GFP-H
curve for GFP-H1.2 at interphase (red) is also indicated. The plot shows the re
somes (>10 chromosomes were not aligned at the metaphase

plate or chromosomes were scattered throughout the cyto-

plasm). The misalignment and non-alignment chromosomes

were detected in 16.1% and 6.5% of H1.X-depleted mitotic

cells, respectively, compared to the corresponding values of

2.1% and 0.2% of control cells. In addition, lagging chromo-

somes were observed at anaphase in 1.4% of H1.X-depleted

mitotic cells, compared to 0.2% of control cells. These defects

in chromosome dynamics and mitotic progression were also

observed in living cells (Fig. S3). The above phenotypes of

H1.X-depleted cells were found to be reproducible when simi-

lar RNAi experiments were carried out using another siRNA

sequence for H1.X (Fig. S1B-E).
3.2. Histone H1.X is localized to nucleoli and mitotic

chromosomes

To examine the intracellular localization of H1.X, we

performed immunostaining with an anti-H1.X antibody

(Fig. 1D). H1.X was predominantly localized in the nucleoli

of interphase cells. The precise nucleolar localization of

H1.X was confirmed by counterstaining of the nucleolar pro-

teins nucleolin and fibrillarin. The nucleolar localization pat-

tern of H1.X differed from those of nucleolin and fibrillarin

(Figs. 1E and S1G). The signal intensity of H1.X in the nucle-

oli was significantly decreased following depletion of H1.X.

During mitosis, H1.X was distributed on chromosomes,

especially at the chromosome periphery (Fig. 1F). In H1.X

RNAi cells, the H1.X signals around the chromosomes disap-

peared and chromosome misalignment was observed

(Fig. 1G).
lization patterns of GFP-H1.X and GFP-H1.2 in living HeLa cells
1.X at interphase (blue) and anaphase (orange). The FRAP recovery
lative recovery of fluorescence in the photobleached region versus time.
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3.3. H1.X is dynamically associated with chromatin

To observe the dynamics of H1.X in living cells, we devel-

oped a stable HeLa cell line that constitutively expressed

H1.X fused to enhance green fluorescent protein (EGFP) at

its N-terminus. GFP-H1.X was mainly localized in nucleoli

at interphase and chromosomes during mitosis (Fig. 2A).

The localization pattern of H1.X differed from that of the typ-

ical linker histone H1.2. At interphase, histone H1.2 was

mainly localized in the nucleoplasm (Fig. 2A). During mitosis,

GFP-H1.2 signals were detected in the chromosomes, and not

in the cytoplasm.

To quantitatively measure the binding kinetics of H1.X to

unperturbed chromatin in living cells, we performed a FRAP

analysis. As shown in Fig. 2B, the fluorescence recovery rate

of H1.X (t1/2 = 4.7 ± 1.9 s) was significantly faster than that

of H1.2 (t1/2 = 126.9 ± 24.1 s). Consistent with these findings,

endogenous H1.X was dissociated from chromatin by a lower

concentration of NaCl than H1.2 (data not shown). Thus, the
Fig. 3. Microtubule attachment and mitotic spindle morphology. (A) Loc
MAD2, in control cells at prometaphase and in H1.X RNAi cells. Kinetoch
(blue). Bar, 5 lm. (B) Kinetochore fiber formation was examined by staining w
The enlarged figures show optically sectioned images of microtubule–kinetoc
misaligned chromosome in an H1.X-depleted cell (ii). Bar, 5 lm. (C) Three
cells. Microtubules were stained with an anti-a-tubulin antibody (green) and
Frequencies of the three phenotypes of spindle aberrations. n = 5; >1000 cel
interaction between H1.X and chromatin is considerably

weaker than that between chromatin and H1.2. We found that

the exchange rate of H1.X remained unchanged between inter-

phase and anaphase. This observation was in strong contrast

to the property of H1.2, which shows dynamic changes in its

chromatin binding persistency during the cell cycle [16].

3.4. Depletion of H1.X induces aberrant spindle formation

The prolonged mitosis observed in H1.X-depleted cells

(Fig. S3) suggests that the spindle checkpoint is activated by

the depletion of H1.X. Actually, spindle checkpoint proteins,

including Bub1, BubR1 and Mad2, were accumulated at the

kinetochores of misaligned chromosomes (Fig. 3A), while the

expression levels of cell cycle-related proteins required for

the transition from metaphase to anaphase, namely CDC20,

CDC27 and Plk1, were the same as those in control cells

(Fig. S4B and C). Furthermore, double knockdown of H1.X

with Aurora B, one of the spindle checkpoint proteins, de-
alizations of spindle checkpoint proteins (green), Bub1, BubR1 and
ores were detected by CREST (red) and DNA was stained with DAPI

ith an anti-a-tubulin antibody (green), CREST (red) and DAPI (blue).
hore attachments to an aligned chromosome in a control cell (i) and a

types of aberrant spindle morphologies are observed in H1.X-depleted
spindle poles were stained with an anti-c-tubulin antibody (red). (D)

ls were counted in each experiment.
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creased the mitotic index from 8.0% to 6.1% in H1.X-depleted

cells (Fig. 1B). These results indicate that the mitotic arrest

caused by H1.X depletion was due to spindle checkpoint acti-

vation rather than failure of metaphase exit.

To further examine whether H1.X is required for accurate

attachment of microtubules to kinetochores, we analyzed kine-

tochore fiber formation in RNAi cells. In control cells, end-on

attachments of microtubules to the kinetochores from the

opposite spindle poles were clearly observed (Fig. 3B). In con-

trast, syntelic attachments were detected in misaligned chro-

mosomes after H1.X depletion. In addition, three types of

defect in spindle morphology were observed (Fig. 3C and

D). In multipolar cells, more than three spindle poles were de-

tected. This phenotype was observed in 1.8% of H1.X-depleted

mitotic cells, compared to 0.4% of control cells. The most fre-

quently observed defect in spindle morphology was spindle dis-

organization. In this case, the mitotic spindle appeared less

focused and the symmetric formation of the spindle was im-

paired. Spindle disorganization was observed in 3.9% of

H1.X-depleted mitotic cells, compared to 0.2% of control cells.

The inter-centrosome distance was increased in 1.7% of mitotic

H1.X-depleted cells. These results strongly suggest that H1.X

is required for accurate mitotic spindle formation.
4. Discussion

We have demonstrated that H1.X is localized in nucleoli by

immunostaining with an anti-H1.X antibody and observation

of GFP-tagged H1.X (Figs. 1 and 2), whereas a somatic H1

subtype, H1.2, is not localized in nucleoli. The alternative

localization of H1.X implies a relationship with nucleolar

functions, such as rDNA transcription and rRNA maturation.

However, depletion of H1.X did not affect the localizations of

nucleolin and fibrillarin (Figs. 1E and S1G), suggesting that

H1.X is not required for the nucleolar structure.

We found that H1.X has low chromatin binding activity and

exhibits rapid exchange from chromatin compared with H1.2.

Recent FRAP analyses have indicated that H1 is dynamically

associated with chromatin in vivo and that both the globular

and C-terminal domains of H1 are required for its stable asso-

ciation with the nucleosome [17–19]. The C-terminal domain

of each H1 subtype is thought to play a role in determining

its binding properties, because the features of this domain,

such as the number of lysine residues, differ greatly among

individual H1 subtypes [20]. For example, 40% of the amino

acids in this domain in H1.2 are occupied by two basic amino

acids (Lys or Arg), but this proportion is reduced to 33% in

H1.X. Furthermore, Thr152 and Ser183, which are important

for accurate H1–chromatin interactions [18], are not conserved

in H1.X. These features of H1.X are probably responsible for

the weaker binding activity between H1.X and chromatin.

H1.X is preferentially distributed to the chromosome periph-

ery, which frequently contains nucleolar components [21], sug-

gesting that H1.X has particular functions at the chromosome

periphery. Our previous study on nucleolin, another chromo-

some peripheral protein, indicated that the integrity of the

chromosome periphery is important for chromosome dynam-

ics and cell cycle progression [22]. We did not detect any mor-

phological defects of mitotic chromosomes in H1.X-depleted

cells. However, mitotic progression was severely inhibited

and defects in chromosome alignment, chromosome segrega-
tion and spindle morphology were observed. Moreover, deple-

tion of H1.X disturbed microtubule attachment to the

kinetochores. Taken together, H1.X has different localization

patterns and chromatin binding activity compared to the other

linker histones throughout the cell cycle and its function is

essential for mitotic progression.
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