200 research outputs found

    Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome.

    Get PDF
    The loss-of-function mutations of serine protease inhibitor, Kazal type 1 (SPINK1) gene are associated with human chronic pancreatitis, but the underlying mechanisms remain unknown. We previously reported that mice lacking Spink3, the murine homologue of human SPINK1, die perinatally due to massive pancreatic acinar cell death, precluding investigation of the effects of SPINK1 deficiency. To circumvent perinatal lethality, we have developed a novel method to integrate human SPINK1 gene on the X chromosome using Cre-loxP technology and thus generated transgenic mice termed "X-SPINK1". Consistent with the fact that one of the two X chromosomes is randomly inactivated, X-SPINK1 mice exhibit mosaic pattern of SPINK1 expression. Crossing of X-SPINK1 mice with Spink3+/- mice rescued perinatal lethality, but the resulting Spink3-/-;XXSPINK1 mice developed spontaneous pancreatitis characterized by chronic inflammation and fibrosis. The results show that mice lacking a gene essential for cell survival can be rescued by expressing this gene on the X chromosome. The Spink3-/-;XXSPINK1 mice, in which this method has been applied to partially restore SPINK1 function, present a novel genetic model of chronic pancreatitis

    Immunologic Monitoring of Cellular Responses by Dendritic/Tumor Cell Fusion Vaccines

    Get PDF
    Although dendritic cell (DC)- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST) and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell

    Current Immunotherapeutic Approaches in Pancreatic Cancer

    Get PDF
    Pancreatic cancer is a highly aggressive and notoriously difficult to treat. As the vast majority of patients are diagnosed at advanced stage of the disease, only a small population is curative by surgical resection. Although gemcitabine-based chemotherapy is typically offered as standard of care, most patients do not survive longer than 6 months. Thus, new therapeutic approaches are needed. Pancreatic cancer cells that develop gemcitabine resistance would still be suitable targets for immunotherapy. Therefore, one promising treatment approach may be immunotherapy that is designed to target pancreatic-cancer-associated antigens. In this paper, we detail recent work in immunotherapy and the advances in concept of combination therapy of immunotherapy and chemotherapy. We offer our perspective on how to increase the clinical efficacy of immunotherapies for pancreatic cancer

    Real-world effectiveness and safety analysis of carfilzomib-lenalidomide-dexamethasone and carfilzomib-dexamethasone in relapsed/refractory multiple myeloma: a multicenter retrospective analysis

    Get PDF
    Background: Little is known about the real-world survival benefits and safety profiles of carfilzomib-lenalidomide-dexamethasone (KRd) and carfilzomib-dexamethasone (Kd). Methods: We performed a retrospective analysis to evaluate their efficacy and safety in 157 patients registered in the Kansai Myeloma Forum database. Results: A total of 107 patients received KRd. Before KRd, 99% of patients had received bortezomib (54% were refractory disease), and 82% had received lenalidomide (57% were refractory disease). The overall response rate (ORR) was 68.2%. The median progression-free survival (PFS) and overall survival (OS) were 8.8 and 29.3 months, respectively. Multivariate analysis showed that reduction of the carfilzomib dose and non-IgG M protein were significantly associated with lower PFS and reduction of the carfilzomib dose and refractoriness to prior bortezomib-based regimens were significantly associated with lower OS. A total of 50 patients received Kd. Before Kd, 96% of patients had received bortezomib (54% were refractory disease). The ORR was 62.0%. The median PFS and OS were 7.1 and 20.9 months, respectively. Based on the multivariate analysis, reduction of the carfilzomib dose and International Staging System Stage III (ISS III) were significantly associated with lower PFS. Grade III or higher adverse events were observed in 48% of KRd cases and 54% of Kd cases. Cardiovascular events, cytopenia, and infections were frequent, and 4 KRd patients died due to heart failure, arrhythmia, cerebral hemorrhage, and pneumonia. Conclusion: Our analysis showed that an adequate dose of carfilzomib is important for achieving the best survival benefits in a real-world setting. Adverse effects after KRd and Kd therapy should also be considered

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    Monocyte or white blood cell counts and β<sub>2</sub> microglobulin predict the durable efficacy of daratumumab with lenalidomide

    Get PDF
    BACKGROUND: Daratumumab is one of the most widely used treatments for relapsed/refractory multiple myeloma (MM) patients. However, not all patients achieve a lasting therapeutic response with daratumumab. OBJECTIVES: We hypothesized that a durable response to daratumumab could be predicted by the balance between the MM tumor burden and host immune status. DESIGN: We conducted a retrospective study using the real-world data in the Kansai Myeloma Forum (KMF) database. METHODS: We retrospectively analyzed 324 relapsed/refractory MM patients who were treated with daratumumab in the KMF database. RESULTS: In this study, 196 patients were treated with daratumumab, lenalidomide, and dexamethasone (DLd) regimen and 128 patients were treated with daratumumab, bortezomib, and dexamethasone (DBd) regimen. The median age at treatment, number of prior treatment regimens and time-to-next-treatment (TTNT) were 68, 4 and 8.02 months, respectively. A multivariate analysis showed that the TTNT under the DLd regimen was longer with either higher monocyte counts (analysis 1), higher white blood cell (WBC) counts (analysis 2), lower β2 microglobulin (B2MG < 5.5 mg/L) or fewer prior regimens (<4). No parameters were correlated with TTNT under the DBd regimen. CONCLUSION: We propose a simple scoring model to predict a durable effect of the DLd regimen by classifying patients into three categories based on either monocyte counts (0 points for ⩾200/μl; 1 point for <200/μl) or WBC counts (0 points for ⩾3500/μl; 1 point for <3500/μl) plus B2MG (0 points for <5.5 mg/L; 1 point for ⩾5.5 mg/L). Patients with a score of 0 showed significantly longer TTNT and significantly better survival compared to those with a score of 1 or 2 (both p < 0.001). To confirm this concept, our results will need to be validated in other cohorts

    Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    Get PDF
    We present data-analysis schemes and results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp-wave analysis, because precise waveform templates are not available. We used an excess-power filter for the extraction of gravitational-wave candidates, and developed two methods for the reduction of fake events caused by non-stationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. The resultant event candidates were interpreted from an astronomical viewpoint. We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave event rate in our Galaxy with a confidence level of 90%. This work sets a milestone and prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector

    Raman spectroscopic detection of the T-HgII-T base pair and the ionic characteristics of mercury

    Get PDF
    Developing applications for metal-mediated base pairs (metallo-base-pair) has recently become a high-priority area in nucleic acid research, and physicochemical analyses are important for designing and fine-tuning molecular devices using metallo-base-pairs. In this study, we characterized the HgII-mediated T-T (T-HgII-T) base pair by Raman spectroscopy, which revealed the unique physical and chemical properties of HgII. A characteristic Raman marker band at 1586 cm−1 was observed and assigned to the C4=O4 stretching mode. We confirmed the assignment by the isotopic shift (18O-labeling at O4) and density functional theory (DFT) calculations. The unusually low wavenumber of the C4=O4 stretching suggested that the bond order of the C4=O4 bond reduced from its canonical value. This reduction of the bond order can be explained if the enolate-like structure (N3=C4-O4−) is involved as a resonance contributor in the thymine ring of the T-HgII-T pair. This resonance includes the N-HgII-bonded state (HgII-N3-C4=O4) and the N-HgII-dissociated state (HgII+ N3=C4-O4−), and the latter contributor reduced the bond order of N-HgII. Consequently, the HgII nucleus in the T-HgII-T pair exhibited a cationic character. Natural bond orbital (NBO) analysis supports the interpretations of the Raman experiments
    corecore