36 research outputs found

    Bacteria Modulate the CD8+ T Cell Epitope Repertoire of Host Cytosol-Exposed Proteins to Manipulate the Host Immune Response

    Get PDF
    The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested

    A Candidate Approach Implicates the Secreted Salmonella Effector Protein SpvB in P-Body Disassembly

    Get PDF
    P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function

    Small RNA with a large impact

    No full text

    espC Pathogenicity Island of Enteropathogenic Escherichia coli Encodes an Enterotoxin

    No full text
    At least five proteins are secreted extracellularly by enteropathogenic Escherichia coli (EPEC), a leading cause of infant diarrhea in developing countries. However only one, EspC, is known to be secreted independently of the type III secretion apparatus encoded by genes located within the 35.6-kb locus of enterocyte effacement pathogenicity island. EspC is a member of the autotransporter family of proteins, and the secreted portion of the molecule is 110 kDa. Here we determine that the espC gene is located within a second EPEC pathogenicity island at 60 min on the chromosome of E. coli. We also show that EspC is an enterotoxin, indicated by rises in short-circuit current and potential difference in rat jejunal tissue mounted in Ussing chambers. In addition, preincubation with antiserum against the homologous Pet enterotoxin of enteroaggregative E. coli eliminated EspC enterotoxin activity. Like the EAF plasmid, the espC pathogenicity island was found only in a subset of EPEC, suggesting that EspC may play a role as an accessory virulence factor in some but not all EPEC strains
    corecore