5 research outputs found

    AMPK is required for recovery from metabolic stress induced by ultrasound microbubble treatment

    No full text
    Summary: Ultrasound-stimulated microbubble (USMB) treatment is a promising strategy for cancer therapy. USMB promotes drug delivery by sonoporation and enhanced endocytosis, and also impairs cell viability. However, USMB elicits heterogeneous effects on cell viability, with apparently minimal effects on a subset of cells. This suggests that mechanisms of adaptation following USMB allow some cells to survive and/or proliferate. Herein, we used several triple negative breast cancer cells to identify the molecular mechanisms of adaptation to USMB-induced stress. We found that USMB alters steady-state levels of amino acids, glycolytic intermediates, and citric acid cycle intermediates, suggesting that USMB imposes metabolic stress on cells. USMB treatment acutely reduces ATP levels and stimulates the phosphorylation and activation of AMP-activated protein kinase (AMPK). AMPK is required to restore ATP levels and support cell proliferation post-USMB treatment. These results suggest that AMPK and metabolic perturbations are likely determinants of the antineoplastic efficacy of USMB treatment

    PRDM15 is a key regulator of metabolism critical to sustain B-cell lymphomagenesis

    No full text
    PRDM (PRDI-BF1 and RIZ homology domain containing) family members are sequence-specific transcriptional regulators involved in cell identity and fate determination, often dysregulated in cancer. The PRDM15 gene is of particular interest, given its low expression in adult tissues and its overexpression in B-cell lymphomas. Despite its well characterized role in stem cell biology and during early development, the role of PRDM15 in cancer remains obscure. Herein, we demonstrate that while PRDM15 is largely dispensable for mouse adult somatic cell homeostasis in vivo, it plays a critical role in B-cell lymphomagenesis. Mechanistically, PRDM15 regulates a transcriptional program that sustains the activity of the PI3K/AKT/mTOR pathway and glycolysis in B-cell lymphomas. Abrogation of PRDM15 induces a metabolic crisis and selective death of lymphoma cells. Collectively, our data demonstrate that PRDM15 fuels the metabolic requirement of B-cell lymphomas and validate it as an attractive and previously unrecognized target in oncology

    Translational and HIF11-Dependent Metabolic Reprograming Underpin Oncometabolome Plasticity and Synergy Between Oncogenic Kinase Inhibitors and Biguanides

    No full text
    corecore