27 research outputs found

    Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants

    Get PDF
    Sodium selenite is used to prevent selenium deficiency known as nutritional muscular dystrophy or white muscle disease. In ruminants, selenium supplements are transformed partiality in insoluble form by ruminal microorganisms and its process decrease the selenium absorption in digestive gastrointestinal. However, the objective in this research was focused in encapsulated sodium selenite to be release into of a pH less than four, similarity to an intestinal environment. It was encapsulated by nanoprecipitation and emulsion–evaporation methods, within polymeric nanoparticles. The effect of these methods, polymer proportion (Eudragit RL and RS) and solvent (ethanol and acetone) on the physicochemical (drug entrapment, polidispersity index (PDI) and z potential) and morphological characteristics (particle morphology and particle size) were evaluated. Particle size from each nanoparticles, formulation ranged from 36.64 to 213.86 nm. Particle size, z potential and PDI increased (P ≤ 0.01) when nanoprecipitation and ethanol were used. No significant differences (P > 0.05) were observed when different polymeric proportions were used. Selenium entrapment was 26% when emulsion–evaporation method was used and 78% with nanoprecipitation. Nanoparticles produced by nanoprecipitation were spherical and had a great variation in particle size; on the other hand, nanoparticles produced by emulsion–evaporation were spherical as well as amorphous and presented a homogeneous nanopartcicle size distribution. The release of selenium from nanoparticles was higher in acid pH (less than 4), this condition may represent a better availability of the mineral in the small intestine

    Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part I. Effect of process variables on the mean size

    Get PDF
    PLGA (poly d,l-lactic-co-glycolic acid) nanoparticles (NPs) encapsulating magnetite nanoparticles (MNPs) along with a model drug human serum albumin (HSA) were prepared by double emulsion solvent evaporation method. This Part I will focus on size and size distribution of prepared NPs, whereas encapsulation efficiency will be discussed in Part II. It was found that mean hydrodynamic particle size was influenced by five important process variables. To explore their effects, a five-factorial, three-level experimental design and statistical analysis were carried out using STATISTICA® software. Effect of process variables on the mean size of nanoparticles was investigated and finally conditions to minimize size of NPs were proposed. GAMS™/MINOS software was used for optimization. The mean hydrodynamic size of nanoparticles ranged from 115 to 329 nm depending on the process conditions. Smallest possible mean particle size can be achieved by using low polymer concentration and high dispersion energy (enough sonication time) along with small aqueous/organic volume ratio
    corecore