353 research outputs found

    Surface melting of the vortex lattice

    Full text link
    We discuss the effect of an (ab)-surface on the melting transition of the pancake-vortex lattice in a layered superconductor within a density functional theory approach. Both discontinuous and continuous surface melting are predicted for this system, although the latter scenario occupies the major part of the low-field phase diagram. The formation of a quasi-liquid layer below the bulk melting temperature inhibits the appearance of a superheated solid phase, yielding an asymmetric hysteretic behavior which has been seen in experiments.Comment: 4 pages, 3 figure

    Free energies, vacancy concentrations and density distribution anisotropies in hard--sphere crystals: A combined density functional and simulation study

    Get PDF
    We perform a comparative study of the free energies and the density distributions in hard sphere crystals using Monte Carlo simulations and density functional theory (employing Fundamental Measure functionals). Using a recently introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009)) we obtain crystal free energies to a high precision. The free energies from Fundamental Measure theory are in good agreement with the simulation results and demonstrate the applicability of these functionals to the treatment of other problems involving crystallization. The agreement between FMT and simulations on the level of the free energies is also reflected in the density distributions around single lattice sites. Overall, the peak widths and anisotropy signs for different lattice directions agree, however, it is found that Fundamental Measure theory gives slightly narrower peaks with more anisotropy than seen in the simulations. Among the three types of Fundamental Measure functionals studied, only the White Bear II functional (Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)) exhibits sensible results for the equilibrium vacancy concentration and a physical behavior of the chemical potential in crystals constrained by a fixed vacancy concentration.Comment: 17 pages, submitted to Phys. Rev.

    Surface Melting of the Vortex Lattice in Layered Superconductors: Density Functional Theory

    Full text link
    We study the effects of an abab-surface on the vortex-solid to vortex-liquid transition in layered superconductors in the limit of vanishing inter-layer Josephson coupling. We derive the interaction between pancake vortices in a semi-infinite sample and adapt the density functional theory of freezing to this system. We obtain an effective one-component order-parameter theory which can be used to describe the effects of the surface on vortex-lattice melting. Due to the absence of protecting layers in the neighbourhood of the surface, the vortex lattice formed near the surface is more susceptible to thermal fluctuations. Depending on the value of the magnetic field, we predict either a continuous or a discontinuous surface melting transition. For intermediate values of the magnetic field, the surface melts continuously, assisting the formation of the liquid phase and suppressing hysteresis above the melting transition, a prediction consistent with experimental results. For very low and very high magnetic fields, the surface melts discontinuously. The two different surface melting scenarios are separated by two surface multicritical points, which we locate on the melting line.Comment: 16 pages, 12 figure

    The electronic transport properties and microstructure of carbon nanofiber/epoxy composites

    Full text link
    Carbon nanofibres (CNF) were dispersed into an epoxy resin using a combination of ultrasonication and mechanical mixing. The electronic transport properties of the resulting composites were investigated by means of impedance spectroscopy. It was found that a very low critical weight fraction (pc = 0.064 wt %) which may be taken to correspond to the formation of a tunneling conductive network inside the matrix. The insulator-to-conductor transition region spanned about one order of magnitude from 0.1 to 1 wt %. Far from the transition, the conductivity increased by two orders of magnitude. This increase and the low value of the conductivity were explained in terms of the presence of an epoxy film at the contact between CNF. A simple model based on the CNF-CNF contact network inside the matrix was proposed in order to evaluate the thickness of that film.Comment: 7 page

    Visualization of wave function of quantum dot at fermi-edge singularity regime

    Get PDF
    We consider electron tunneling spectroscopy through an InAs quantum dot in a magnetic field applied perpendicular to the tunneling direction. We examine in details the anisotropic behavior of the amplitude and shape of the resonant peaks of I-V curves and concluded that (i) magnetotunneling spectroscopy at FES regime allows establishing position of resonant level in QD with high accuracy. (ii) The distinguishable shape of FES peak allows extracting the amplitude with much better accuracy. (iii) FES exponent dependence on magnetic field gives additional information about potential distribution outside QD.Foundation for Science and Technology (FCT

    Temperature Evolution of Sodium Nitrite Structure in a Restricted Geometry

    Full text link
    The NaNO2_{2} nanocomposite ferroelectric material in porous glass was studied by neutron diffraction. For the first time the details of the crystal structure including positions and anisotropic thermal parameters were determined for the solid material, embedded in a porous matrix, in ferro- and paraelectric phases. It is demonstrated that in the ferroelectric phase the structure is consistent with bulk data but above transition temperature the giant growth of amplitudes of thermal vibrations is observed, resulting in the formation of a "premelted state". Such a conclusion is in a good agreement with the results of dielectric measurements published earlier.Comment: 4 pages, 4 figure

    Melting of Hard Cubes

    Full text link
    The melting transition of a system of hard cubes is studied numerically both in the case of freely rotating cubes and when there is a fixed orientation of the particles (parallel cubes). It is shown that freelly rotating cubes melt through a first-order transition, whereas parallel cubes have a continuous transition in which positional order is lost but bond-orientational order remains finite. This is interpreted in terms of a defect-mediated theory of meltingComment: 5 pages, 3 figures included. To appear in Phys. Rev.

    Giga-Hertz quantized charge pumping in bottom gate defined InAs nanowire quantum dots

    Get PDF
    Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to 1.3 1.3\,GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.Comment: 21 page

    Isomorphs, hidden scale invariance, and quasiuniversality

    Get PDF
    This paper first establishes an approximate scaling property of the potential-energy function of a classical liquid with good isomorphs (a Roskilde-simple liquid). This "pseudohomogeneous" property makes explicit that - and in which sense - such a system has a hidden scale invariance. The second part gives a potential-energy formulation of the quasiuniversality of monatomic Roskilde-simple liquids, which was recently rationalized in terms of the existence of a quasiuniversal single-parameter family of reduced-coordinate constant-potential-energy hypersurfaces [J. C. Dyre, Phys. Rev. E 87, 022106 (2013)]. The new formulation involves a quasiuniversal reduced-coordinate potential-energy function. A few consequences of this are discussed

    Simplicity of condensed matter at its core: Generic definition of a Roskilde-simple system

    Get PDF
    The theory of isomorphs is reformulated by defining Roskilde-simple systems (those with isomorphs) by the property that the order of the potential energies of configurations at one density is maintained when these are scaled uniformly to a different density. Isomorphs remain curves in the thermodynamic phase diagram along which structure, dynamics, and excess entropy are invariant, implying that the phase diagram is effectively one-dimensional with respect to many reduced-unit properties. In contrast to the original formulation of the isomorph theory, however, the density-scaling exponent is not exclusively a function of density and the isochoric heat capacity is not an exact isomorph invariant. A prediction is given for the latter quantity's variation along the isomorphs. Molecular dynamics simulations of the Lennard-Jones and Lennard-Jones Gaussian systems validate the new approach
    • …
    corecore