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Simplicity of condensed matter at its core: Generic definition
of a Roskilde-simple system

Thomas B. Schrødera) and Jeppe C. Dyreb)

DNRF Centre “Glass and Time,” IMFUFA, Department of Sciences, Roskilde University, Postbox 260,
DK-4000 Roskilde, Denmark

(Received 9 June 2014; accepted 24 October 2014; published online 25 November 2014)

The isomorph theory is reformulated by defining Roskilde-simple systems by the property that the
order of the potential energies of configurations at one density is maintained when these are scaled
uniformly to a different density. If the potential energy as a function of all particle coordinates is
denoted by U(R), this requirement translates into U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb). Isomorphs
remain curves in the thermodynamic phase diagram along which structure, dynamics, and excess
entropy are invariant, implying that the phase diagram is effectively one-dimensional with respect to
many reduced-unit properties. In contrast to the original formulation of the isomorph theory, however,
the density-scaling exponent is not exclusively a function of density and the isochoric heat capacity is
not an exact isomorph invariant. A prediction is given for the latter quantity’s variation along the iso-
morphs. Molecular dynamics simulations of the Lennard-Jones and Lennard-Jones Gaussian systems
validate the new approach. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901215]

I. INTRODUCTION

In regard to structure and dynamics, liquids or solids
dominated by van der Waals or weakly ionic and dipolar in-
teractions, as well as metals, have much more regular behav-
ior than condensed matter dominated by directional bonds
(hydrogen or covalent bonds) or strong Coulomb forces.1–14

This old insight has recently been formalized and confirmed
by computer simulations of several models systems.13 Thus
it has been shown that systems with strong virial potential-
energy correlations—a characteristic of the former class of
systems—have “isomorphic” curves in the condensed-matter
region of the thermodynamic phase diagram, curves along
which structure and dynamics in properly reduced units are
invariant to a good approximation. The systems in question
were first referred to as “strongly correlating,”7 but this name
was often confused with strongly correlated quantum sys-
tems and now the term “Roskilde-simple systems” or just
“Roskilde systems” is being used.12–21 The existence of iso-
morphs means that for many quantities the phase diagram be-
comes effectively one-dimensional, a property that rules out
anomalies.11 A review of the isomorph theory was recently
given in Ref. 13.

An important experimental signature of Roskilde-simple
systems is that they obey power-law density scaling over lim-
ited density variations, i.e., that the relaxation time is a func-
tion of ργ /T where ρ is the number density, T is the tem-
perature, and γ is the so-called density-scaling exponent.22, 23

These systems also obey isochronal superposition by which
is meant the property that the average relaxation time deter-
mines the entire relaxation-time spectrum.24, 25 A further ap-
plication of the isomorph theory is the fact that for Roskilde-
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simple systems the melting line is an isomorph, which ex-
plains the invariances along it of several quantities.26–29

A system of N particles in volume V is considered with
ρ ≡ N/V . The theory of isomorphs refers to quantities given
in so-called reduced units.27 The length and energy units are
always ρ−1/3 and kBT, respectively, whereas the time unit de-
pends on the dynamics (Newtonian or Brownian). In terms
of the particle coordinates the configuration vector is defined
by R ≡ (r1, . . . , rN); its reduced-unit version is given by
R̃ ≡ ρ1/3R. The original isomorph theory27 defines two ther-
modynamic state points with density and temperature (ρ1,
T1) and (ρ2, T2), respectively, to be isomorphic if the follow-
ing condition is obeyed: Whenever two physically important
configurations of the state points, R1 and R2, have the same
reduced coordinates, i.e., ρ

1/3
1 R1 = ρ

1/3
2 R2, the following

applies:

exp(−U (R1)/kBT1) ∼= C12 exp(−U (R2)/kBT2) . (1)

It is understood that the constant C12 does not depend on
the configurations. Thus whenever two configurations of iso-
morphic state points have the same reduced coordinates,
their canonical probabilities are (almost) identical. This im-
plies (almost) identical structure and dynamics in reduced
units.13, 27

It was recently shown that the existence of isomorphs for
a given system is conveniently expressed in the “hidden-scale-
invariance” identity that factorizes the potential-energy func-
tion U(R) as follows:13, 30

U (R) ∼= h(ρ)�̃(R̃) + g(ρ) . (2)

Here the function �̃(R̃) is dimensionless and state-point inde-
pendent. Equation (2) expresses a global, approximate scale
invariance in the sense that the function �̃(R̃), which de-
termines structure and dynamics in reduced coordinates, is
unchanged for a uniform scaling of all particle coordinates.

0021-9606/2014/141(20)/204502/9/$30.00 © 2014 AIP Publishing LLC141, 204502-1
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This global approximate scale invariance is in the present pa-
per modified into a more local form of scale invariance valid
along each isomorph separately.

The theory proposed below does not drastically change
the predictions of the original isomorph theory,27 but there are
some important differences. In Sec. II, we present an intuitive
approach emphasizing the underlying physical idea. Section
III proceeds axiomatically and derives the generalized iso-
morph theory from a new definition of Roskilde-simple sys-
tems. Because of its axiomatic approach Sec. III can be read
independently of Sec. II. Section IV establishes the connec-
tion between the two approaches and finally Sec. V summa-
rizes the paper.

II. TOWARDS A GENERALIZED ISOMORPH THEORY:
AN INTUITIVE APPROACH

For numerical tests it is convenient to transform
Eq. (2) into an equation relating the potential-energy surfaces
at two different densities, ρ1 and ρ2. In the following, we
let R1 and R2 denote configurations at densities ρ1 and ρ2,
respectively, which have identical reduced coordinates, i.e.,
ρ

1/3
1 R1 = ρ

1/3
2 R2 ≡ R̃. By elimination of �̃(R̃) Eq. (2) im-

plies

U (R2) ∼= h1(ρ2)U (R1) + g1(ρ2) . (3)

Here the functions h1(ρ2) and g1(ρ2) depend on ρ1, which
henceforth plays the role of reference density for which rea-
son the ρ1 dependence is only indicated in the subscript 1.
Equation (3) describes how the potential-energy surface at
density ρ1 scales when density is changed to ρ2, namely, to
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FIG. 1. Results from uniform scaling of configurations of a Lennard-Jones
(LJ) liquid from density 1.0 to density 2.0 (in the LJ unit system defined by
ε = σ = 1). Black gives a scatter plot for configurations generated at tem-
perature 2.0 and red at temperature 4.0, in both cases from simulations at
the reference density ρ1 = 1.0. Dashed lines are linear regression fits, num-
bers in parentheses indicate the estimated error on the last digit. RDI is the
Pearson correlation coefficient for the two data sets. The strong correlations
between original, U1 ≡ U(R1), and scaled potential energies, U2 ≡ U(R2),
confirms that the LJ liquid is a Roskilde-simple system, i.e., one with strong
virial potential-energy correlations and good isomorphs.27 The distributions
of U1 for the temperatures 2.0 and 4.0, respectively, are indicated on the x-
axis. 1728 LJ particles were simulated in the NV T ensemble using a Nose-
Hoover thermostat with time constant 0.2. The time step was 0.001 and the
potential was cut and shifted at 4.5 (LJ units). The simulations were carried
out using the Roskilde University Molecular Dynamics (RUMD) code.32
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FIG. 2. Investigations of the isomorph invariance of structure and dynamics
of the LJ system for the state points of Fig. 1 according to which (ρ, T) =
(1.0, 2.0) is predicted to be isomorphic to the state point (2.0, 2.0 · 22.11)
= (2.0, 44.22) since the linear regression slope of the direct isomorph check
(black points) in Fig. 1 is 22.11. Similarly, (ρ, T) = (1.0, 4.0) is predicted
to be isomorphic to (2.0, 84.00). (a) Mean-square displacement in standard
LJ units for the four state points. (b) Mean-square displacement in reduced
units, demonstrating isomorph invariance.27 (c) Radial distribution functions
in reduced units, demonstrating isomorph invariance with minor deviations
at the first peak maximum.

a good approximation simply by a linear, affine transforma-
tion. In particular, Eqs. (3) implies (1) if the temperatures in-
volved obey T2/T1 = h1(ρ2) = h(ρ2)/h(ρ1),13, 27 which is thus
the condition for identifying isomorphic state points. This ob-
servation forms the basis of the so-called “direct isomorph
check”27 in which configurations drawn from an equilibrium
simulation at ρ1 are used to test the scaling by evaluating the
potential energy after uniformly scaling the configurations to
density ρ2. As an example, in Fig. 1 this is done for the single-
component Lennard-Jones (LJ) system with ρ1 = 1.0 and ρ2
= 2.0 (LJ units). The black and red points refer to drawing
R1’s from equilibrium simulations at T1 = 2.0 and T1 = 4.0,
respectively (LJ units). The original isomorph theory imply-
ing Eq. (3) predicts these two scatter plots to lie on a common
straight line. This applies approximately, but not exactly. Thus
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FIG. 3. (a) Density-scaling exponent γ of the LJ system calculated from the fluctuation expression27 γ = 〈�W�U〉/〈(�U )2〉 at density 1.0 as a function of
temperature, a quantity the original isomorph theory predicts to only depend on the density.27 Dashed curve: a power law plus 4 (the known high-temperature
limit coming from the LJ potential’s r−12 term) plotted as a guide to the eye. (b) Excess isochoric heat capacity along three different isomorphs, a quantity
the original isomorph theory predicts to be isomorph invariant.27 The full curves are the predictions of the new formulation of the isomorph theory (Eq. (6)
with h1(ρ2) = (ρ2/ρ1)4(γ 1/2 − 1) − (ρ2/ρ1)2(γ 1/2 − 2) with γ 1 ≡ γ (ρ1, T1), a function that can be determined from the simulation data obtained at the
reference density ρ1 = 1.0 reported in (a) (this functional form is specific for the LJ system33, 34). As low densities are approached, the theory breaks down. For
the lowest temperature we included one data point where this starts to happen (open black circle). This point is a metastable liquid in the gas-liquid co-existence
region; it has negative virial and a lower virial potential-energy correlation coefficient R—these three properties all indicate breakdown of the isomorph theory.27

doubling the sampling temperature from 2.0 to 4.0, changes
the estimated value of h1(ρ2) by roughly 5%. As demon-
strated below, such small deviations have significant conse-
quences for the variation of the isochoric heat capacity CV

along the isomorphs31 and for the temperature dependence of
the density-scaling exponent at fixed density.

In order to generalize Eq. (3), we assume a general one-
to-one mapping of the potential-energy surface at ρ1 to that at
ρ2,

U (R2) ∼= f1(ρ2, U (R1)) . (4)

The original formulation of the isomorph theory as expressed
in Eq. (3) is recovered as the first-order Taylor approximation
to Eq. (4). Consider a direct isomorph check corresponding,
e.g., to the black points in Fig. 1 (T1 = 2.0). For the relevant
range of potential energies Eq. (3) is evidently an excellent
approximation to Eq. (4) if one identifies

h1(ρ2, U1) ≡
(

∂f1

(
ρ2, U1

)
∂U1

)
ρ1,ρ2

(5)

in which U1 is the mean potential energy at the reference state
point (ρ1, T1). Defining T2 ≡ h1(ρ2, U1)T1, the state point
(ρ2, T2) is isomorphic to the state point (ρ1, T1), compare
the discussion above after Eq. (3). Following Ref. 27, it is
straightforward to show that:

1. The canonical probabilities of the configurations R1 and
R2 are identical (to a good approximation), implying
that all structural characteristics are invariant in reduced
units;27

2. the reduced forces associated with the configurations R1
and R2 are identical, which implies that the dynamics is
isomorph invariant in reduced units. The predicted iso-
morph invariance of structure and dynamics for the state
points of Fig. 1 is confirmed in Fig. 2;

3. since the excess entropy is determined by the structure,
this quantity is an isomorph invariant.

An obvious question is: Are there corrections to these
three points coming from the fact that they were derived from

a first-order approximation to Eq. (4)? Based on considera-
tions of the dependence on the system size N, this cannot be
the case: The range of potential energies sampled at (ρ1, T1)
depends on the system size. The standard deviation of U1/N
is proportional to 1/

√
N , i.e., had we simulated a four times

larger system, the distributions in Fig. 1 would have been half
as wide. Thus approaching the thermodynamic limit, the first-
order approximation to Eq. (4) becomes better and better; in
other words, the three above predictions are not influenced by
the higher-order derivatives of Eq. (4) since the predictions
deal (implicitly) with the thermodynamic limit.

But which predictions do change in the new formulation
of the isomorph theory, Eq. (4)? In the formulation Eq. (3), the
ratio T2/T1 is given by h1(ρ2), which only depends on the den-
sities involved, ρ1 and ρ2. In the new formulation, this ratio is
given by h1(ρ2, U1) and in general depends on the isomorph
in question—parameterized by U1, the potential energy at
the reference density ρ1. It follows that the density-scaling
exponent27 γ ≡ (∂ ln T/∂ ln ρ)Sex

may vary on the isochores,
whereas in the original isomorph theory γ was predicted to
be constant on these.27 Figure 3(a) shows that γ indeed does
change on the ρ = 1 isochore, slowly approaching the limit
4 known to apply at very high temperatures at which the LJ
potential’s repulsive r−12 term dominates.

Many thermodynamic response functions get a contribu-
tion from the second derivatives of f1(ρ2, U1)—the exceptions
being those for which the excess entropy is kept constant.
An important case is the excess isochoric heat capacity, Cex

V ,
which is predicted to be isomorph invariant in the original
formulation of the theory27 though this is not always accu-
rately obeyed in simulations.31 Writing Cex

V,2 = (∂U2/∂T2)ρ2

= (∂U2/∂U1)ρ2

(
∂U1/∂T2

)
ρ2

and using T2 = h1(ρ2, U1)T1 in

conjunction with Eq. (5), it is straightforward to show that
1/Cex

V,2 = 1/Cex
V,1 + (

T1/h1(ρ2, U1)
) (

∂h1(ρ2, U1)/∂U1

)
ρ2

.

This can be rewritten as

Cex
V,2 = Cex

V,1

/ [
1 +

(
∂ ln h1(ρ2, U1)

∂ ln T1

)
ρ1,ρ2

]
. (6)
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FIG. 4. Illustrations of the new definition of a Roskilde-simple system. Each figure shows the potential energies of 20 configurations taken from an equilibrium
simulation at the density marked by the red dashed line, which were subsequently scaled 20% uniformly up and down in density and plotted as a function
of density after being normalized by subtracting the average potential energy and scaled by the standard deviation (averages and standard deviations were
determined from 1000 configurations). For an ideal Roskilde-simple system, the curves cannot cross each other. (a) Data for the LJ system based on simulations
at the state point (ρ, T) = (1.0, 2.0) where this system has strong virial potential-energy correlations (R = 0.99). (b) Data for the Lennard-Jones Gaussian (LJG)
system35 based on simulations at the state point (ρ, T) = (0.4, 0.138) where R = 0.16.

For LJ systems an analytical expression for h1(ρ2, U1) has
been derived: h1(ρ2) = (ρ2/ρ1)4(γ 1/2 − 1) − (ρ2/ρ1)2(γ 1/2
− 2) with γ 1 ≡ γ (ρ1, T1),33, 34 which combined with
Eq. (6) shows that the variation of Cex

V (ρ2) along an isomorph
is determined by the two numbers γ 1 and

(
∂γ1/∂T

)
ρ1

.

Figure 3(b) tests the prediction for Cex
V,2 for three isomorphs

generated with T1 = 2.0, 3.0, and 4.0, respectively, at the
reference density ρ1 = 1.0. The values of γ 1 and

(
∂γ1/∂T

)
ρ1

were determined from the reference density simulations
reported in Fig. 3(a). As can be seen in Fig. 3(b) the Cex

V (ρ2)
prediction agrees very well with the simulations.

III. AXIOMATIC FORMULATION

In Sec. II an isomorph was identified by the potential en-
ergy at the reference density ρ1, which is expedient in nu-
merical tests of the theory. In this section, we formalize the
new theory, and here it is more convenient to identify the iso-
morphs by their excess entropy.

A Roskilde-simple system is henceforth defined by the
property that whenever two configurations Ra and Rb refer to
the same density, one has

U (Ra) < U (Rb) ⇒ U (λRa) < U (λRb) . (7)

Because this will apply for scaling “both ways,” an equiv-
alent formulation is to replace ⇒ by ⇔, which in turn im-
plies that if two configurations have the same potential energy,
their scaled versions also have same potential energy. Thus an
equivalent definition of a Roskilde-simple systems is

U (Ra) = U (Rb) ⇒ U (λRa) = U (λRb) . (8)

Any Euler-homogeneous potential-energy function obeys this
condition, but so does a homogeneous function plus a con-
stant; in view of this Eq. (8) may be said to express a gener-
alized homogeneity condition. Presumably no other systems
obey Eq. (8) for all configurations. In the following, we make
the weaker assumption that Eqs. (7) or (8) apply for most
of the physically relevant configurations. This reflects the fact

that the isomorph theory is inherently approximate for all re-
alistic models.

Figure 4 shows the potential energies as functions of den-
sity for scaled configurations of the LJ system that has strong
virial potential-energy correlations in the dense fluid phase,
as well as for the Lennard-Jones Gaussian (LJG) system for
which this is not the case. For both systems 20 configura-
tions were picked from an equilibrium simulation at the den-
sity marked by the red vertical dashed line, and each of these
configurations were scaled uniformly to densities involving
changes of ±20%. According to Eq. (7) curves giving the po-
tential energy of such uniformly scaled configurations can-
not cross each other. Since compression increases the poten-
tial energy dramatically, in order to facilitate comparison with
Eq. (7) at each density we subtracted the mean potential en-
ergy and scaled by the standard deviation—still, a system is
(perfectly) Roskilde-simple if no curves cross each other. This
is obeyed to a good approximation for the LJ system, but not
for the LJG system; the low-density weak violations observed
for the LJ system reflect the fact that it here gradually enters
a region of weaker virial potential-energy correlations (com-
pare Fig. 3(b)).

In the remainder of Sec. III, whenever a thermodynamic
quantity is given without reference to a specific configuration
R, the quantity refers to the thermal equilibrium value at the
state point in question. When we write U, for instance, this
means the average potential energy at the given state point,
whereas writing U(R) signifies the potential energy of the
configuration R.

Recall that the entropy S may be written as a sum of the
ideal-gas entropy Sid at the same density and temperature and
the so-called excess entropy, S = Sid + Sex. For an ideal gas
Sex = 0; for any system with interactions Sex < 0 because
no matter what is the nature of the interactions, such a sys-
tem must be less disordered than an ideal gas. The Appendix
reviews the definition of the excess free energy and other ex-
cess thermodynamic quantities; it also reviews the derivation
of the microcanonical ensemble expression for Sex, which is
used below for developing the new formulation of the iso-
morph theory.
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In their theory of thermodynamic fluctuations, Landau
and Lifshitz define the entropy fluctuation at a given state
point as the change in the equilibrium entropy “formally re-
garded as a function of the exact value of the fluctuating
energy.”36 More generally, given a system and a set of coarse-
grained variables A1, . . . , An, for any given microstate 
 one
defines (via an integral over delta functions) the entropy func-
tion S(
) as the logarithm of the number of microstates that
have the same coarse-grained variables as 
.37 Clearly, S(
)
depends on the choice of coarse-grained variables. The case
discussed by Landau and Lifshitz corresponds to that of a sin-
gle coarse-grained variable, the energy; we follow this below
except for using the potential energy instead of the total en-
ergy as coarse-grained variable.

We thus define the microscopic excess entropy function
Sex(R) as the thermodynamic excess entropy of a system with
average potential energy equal to U(R) at the density ρ of the
configuration R, i.e.,

Sex(R) ≡ Sex(ρ,U (R)) . (9)

Here Sex(ρ, U) is the thermodynamic equilibrium excess en-
tropy of the state point with density ρ and average potential
energy U. This definition only makes sense for typical config-
urations filling out the volume, of course, because it is essen-
tial that the configuration defines a density. Inverting Eq. (9),
the potential-energy function by definition obeys

U (R) = U (ρ, Sex(R)) (10)

in which the right-hand side is the thermodynamic equilib-
rium potential energy as a function of density ρ and ther-
modynamic excess entropy Sex, evaluated by substituting
Sex = Sex(R).

By definition, Eqs. (9) and (10) apply for any system. We
now limit the discussion to Roskilde-simple systems. Suppose
R1 is a configuration at density ρ1 with the same reduced co-
ordinate as R2, a configuration at density ρ2. It follows from
Eq. (9) and the microcanonical expression for the excess en-
tropy (Eq. (A1) of the Appendix) that if “Vol” is the reduced-
coordinate configuration-space volume, one has

Sex(R1)/kB

= −N ln N + ln
(
Vol

{
R̃′ | U(

ρ
−1/3
1 R̃′) < U (R1)

})
. (11)

Likewise

Sex(R2)/kB

= −N ln N + ln
(
Vol

{
R̃′ | U(

ρ
−1/3
2 R̃′) < U (R2)

})
. (12)

Because R2 = ρ
−1/3
2 ρ

1/3
1 R1, applying λ = ρ

−1/3
2 ρ

1/3
1 in the

⇔ version of Eq. (7) to the inequality of the first set (Eq. (11))
we see that the two sets are identical. Thus Sex(R1) = Sex(R2),
which means that for a Roskilde-simple system Sex(R) de-
pends only on the configuration’s reduced coordinate

Sex(R) = Sex(R̃). (13)

Equation (10) thus becomes

U (R) = U (ρ, Sex(R̃)). (14)

This “U = U” relation, which links the microscopic potential-
energy function to the thermodynamic average potential-
energy function, gives the fundamental characterization of
Roskilde-simple systems. It is understood that, just as in the
original isomorph theory, this identity is not obeyed exactly
for all configurations, but to a good approximation for most
of the physically relevant configurations. We proceed to de-
rive the consequences of Eq. (14).

A. Invariance of structure and dynamics along
the configurational adiabats

In reduced coordinates Newton’s second law for a sys-
tem of identical masses is d2R̃/dt̃2 = F̃ in which the reduced
force vector is defined from the full force vector F (all particle
forces joined into a single vector) by F̃ ≡ Fρ−1/3/kBT 27 (the
below derivations all generalize straight away to systems of
particles with different masses).

In general, one has F̃ = F̃(R), implying different dynam-
ics at different state points. For a Roskilde-simple system,
however, as we shall see now, the reduced force is a func-
tion of the reduced configuration vector, F̃ = F̃(R̃). To show
this, note that since ∇ = ρ1/3∇̃, Eq. (14) implies F = −∇U

= −(∂U/∂Sex)ρ ρ1/3∇̃Sex(R̃). Since (∂U/∂Sex)ρ = T, this
means that F̃ = −∇̃Sex(R̃)/kB . Thus the reduced force is a
unique function of the reduced coordinates. This implies that
the reduced-unit dynamics is invariant along the configura-
tional adiabats, because via Eq. (13) two state points on a
given isomorph—given by a certain value of Sex—correspond
to the same reduced coordinate vectors R̃.

The fact that the dynamics is invariant along the con-
figurational adiabats immediately implies invariance of the
reduced-unit structure: If the same configurations are traced
out in the course of time at two different state points—except
for a uniform scaling of space and time—the structure as mea-
sured, e.g., via the reduced-unit radial distribution function or
higher-order correlation functions must be identical at the two
state points. This is of course consistent with the fact that Sex,
a measure of the structural disorder, by definition is constant
along the configurational adiabats.

B. Isomorphs

Inspired by the above we now define isomorphs as the
configurational adiabats in the thermodynamic phase dia-
gram. Thus by definition the excess entropy is an isomorph
invariant. As we have seen in Sec. III A, structure and
dynamics are invariant to a good approximation along the
isomorphs.

Expanding Eq. (14) to first order at constant density at
any given state point and recalling that (∂U/∂Sex)ρ = T we
get

U (R) ∼= U + T (ρ, Sex)(Sex(R̃) − Sex). (15)

Consider two state points (ρ1, T1) and (ρ2, T2) with the same
excess entropy Sex. If R1 and R2 are two physically relevant
configurations of these state points with the same reduced
coordinates, Eq. (15) implies that if one for brevity writes
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T(ρ1, Sex) = T1 and T(ρ2, Sex) = T2, the following applies:

U (R1) − U1

kBT1

∼= U (R2) − U2

kBT2

. (16)

Changing sign and taking the exponential this becomes
Eq. (1), the condition that the two state points are isomorphic
according to the original definition.27 Thus, as also stated in
Sec. II, the original formulation of the isomorph theory is the
first-order approximation to the new formulation.

C. Strong virial potential-energy correlations
for constant-density fluctuations

The microscopic virial is defined10, 38 by

W (R) ≡ −1

3
R · ∇U (R) . (17)

Recall that at any state point the average of W (R) (denoted by
W ) gives the contribution to the pressure from the interactions
via the general equation of state pV = NkBT + W .10, 38

Below, we first show that the potential energy determines
the virial, which implies that these quantities are strongly
correlated. Next we calculate the proportionality constant of
the virial potential-energy equilibrium fluctuations. In regard
to the first objective, suppose two configurations are given,
Ra and Rb, which have the same density and the same po-
tential energy, U(Ra) = U(Rb). We conclude from Eq. (8)
that U(λRa) = U(λRb). Taking the derivative of this with re-
spect to λ results in Ra · ∇U(λRa) = Rb · ∇U(λRb), which for
λ = 1 implies W (Ra) = W (Rb). Thus any two configurations
with same density and potential energy have the same virial.
This means that W is a function of U and density, which im-
plies perfect correlations between potential energy and virial
at constant density. No realistic systems obey Eq. (8) with
mathematical rigor, so in practice the correlations will not be
perfect, but strong.

The constant of proportionality between the equilib-
rium virial and potential-energy fluctuations at a given state
point is denoted by γ and referred to as the density-scaling
exponent;8, 13, 27 γ is characterized by

�W (t) ∼= γ �U (t) . (18)

Reference 27 defined γ at any given state point by

γ (ρ, Sex) ≡
(

∂ ln T

∂ ln ρ

)
Sex

(19)

and derived the general fluctuation expression

γ (ρ, Sex) = 〈�W�U 〉
〈(�U )2〉 . (20)

Here the angular brackets denote canonical NV T averages.
Whenever Eq. (18) is obeyed to a good approximation, i.e.,
for Roskilde-simple systems, Eq. (20) implies that γ of
Eq. (19) is the same as that appearing in Eq. (18), ensuring
consistency. We proceed to derive Eq. (18) from the definition
of the density-scaling exponent Eq. (19) for Roskilde-simple
systems.

As shown in the Appendix W (R) = (∂U (R)/∂ ln ρ)R̃,27

an expression which basically expresses that the microscopic

virial is given by the work done to uniformly expand a given
configuration. Substituting Eq. (14) into this expression leads
to

W (R) =
(

∂U (ρ, Sex(R̃))

∂ ln ρ

)
R̃

. (21)

Expanding to first order around the equilibrium values of
virial and excess entropy at the state point in question leads to

W (R) ∼= W +
(

∂2U

∂Sex∂ ln ρ

)
(Sex(R̃) − Sex). (22)

Interchanging the order of the differentiations we get

W (R) − W ∼=
(

∂T

∂ ln ρ

)
Sex

(Sex(R̃) − Sex). (23)

Eliminating Sex(R̃) − Sex from Eqs. (15) and (23) leads to

W (R) − W ∼=
(

∂ ln T

∂ ln ρ

)
Sex

(U (R̃) − U ). (24)

This can be rewritten as

W (R) ∼= γ (ρ, Sex)U (R) + C(ρ, Sex) (25)

in which γ (ρ, Sex) is the density-scaling exponent defined in
Eq. (19) and C(ρ, Sex) = W − γ (ρ, Sex)U . For the constant-
density equilibrium fluctuations at a given state point Eq. (25)
implies Eq. (18), i.e., strong virial potential-energy correla-
tions.

D. Single-parameter family of reduced-coordinate
constant-potential-energy hypersurfaces

A molecular dynamics may be formulated that is de-
fined by geodesic motion on the constant-potential-energy
hypersurface, so-called NVU dynamics.39, 40 For most quan-
tities NVU dynamics gives results that in the thermody-
namic limit are identical to those of conventional Newto-
nian NVT or NVE dynamics.40 In reduced coordinates, the
constant-potential-energy hypersurfaces are the sets defined
by {R̃′ | U (ρ−1/3R̃′) = Const.}. These sets are generally pa-
rameterized by the two parameters specifying a thermody-
namic state point, e.g., density and average potential energy,
which in regard to NVU dynamics results in the a priori ex-
pected situation of different dynamics at different state points.
For a Roskilde-simple system, however, Eq. (14) implies that
these sets are identical to the reduced-coordintate constant-
excess-entropy hypersurfaces, i.e., parameterized by a single
number, the excess entropy.27 This is consistent with the iso-
morph invariance of the dynamics.

IV. CONNECTING TO THE APPROACH OF SEC. II

To establish the equivalence of the formulations of the
new isomorph theory given in Secs. II and III, respectively,
we consider two state points (ρ1, T1) and (ρ2, T2) with the
same excess entropy, Sex(ρ1, T1) = Sex(ρ2, T2). If R1 is a typ-
ical configuration of the first state point and similarly for R2,
by definition of the microscopic entropy function (Eqs. (9)
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and (10)) recalling that U(ρ, Sex) and Sex(ρ, U) are the ther-
modynamic functions relating state point averages we have

U (R1) = U (ρ1, Sex(ρ1, U (R1))),
(26)

U (R2) = U (ρ2, Sex(ρ2, U (R2))) .

Writing as in Sec. II for brevity U(R1) = U1, etc., if the
two configurations have the same reduced coordinates, since
Eq. (13) implies Sex(ρ1, U1) = Sex(ρ2, U2), we have that

U2 = U (ρ2, Sex(ρ2, U2)) = U (ρ2, Sex(ρ1, U1)) . (27)

Comparing to Eq. (4) leads to the identification

f1(ρ2, U1) = U (ρ2, Sex(ρ1, U1)) . (28)

To validate this expression we calculate the ratio T2/T1,
which according to Sec. II should be given by T2/T1
= (∂f1/∂U1)ρ1,ρ2

. Since the two state points have same ex-
cess entropy, below denoted by Sex, and since ρ1 by virtue of
its role as reference density is constant throughout, Eq. (28)
implies(

∂f1

∂U1

)
ρ1,ρ2

=
(

∂U (ρ2, Sex)

∂Sex

)
ρ2

(
∂Sex

∂U1

)
ρ1

. (29)

From the thermodynamic definition of temperature, this gives
the required (

∂f1

∂U1

)
ρ2

= T2

T1

. (30)

V. CONCLUDING REMARKS

Appendix A of the original isomorph paper Ref. 27
showed that points B, C, and D of Sec. III are equivalent, i.e.,
if any one of these three quite different characterizations of
a given system applies, the two others follow by necessity. In
that paper, isomorphs were defined from the condition Eq. (1),
and the reduced-unit isomorph invariance of structure and dy-
namics was derived from this equation. Likewise, Eq. (1) was
shown to imply that isomorphs are configurational adiabats.
In contrast, we have here defined the isomorphs as the config-
urational adiabats and showed that structure and dynamics are
invariant along these.

Section III D discussed the constant-potential-energy hy-
persurface characterization of Roskilde-simple systems: In
reduced-coordinate space these hypersurfaces constitute a
single-parameter family parameterized by the value of the
microscopic excess entropy function. In Ref. 27 this prop-
erty was discussed in a slightly different language, noting
that these high-dimensional hypersurfaces are identical along
the isomorphs (a property that via NVU dynamics imme-
diately implies isomorph invariance of the dynamics). We
here wish to point out that this characterization is closely
related to the present paper’s definition of Roskilde sim-
ple systems. Suppose that Ra and Rb are two configura-
tions of same density, which have the same potential en-
ergy, U (Ra) = U (Rb). Then these two configurations belong
to the same reduced-coordinate constant-potential-energy hy-
persurface �̃. Because both of the uniformly scaled configu-

rations, λRa and λRb, have the same reduced coordinates as
the original configuration, these scaled ones are located on the
same reduced-coordinate constant-potential-energy hypersur-
face �̃. This implies that they have the same potential energy,
i.e., U (λRa) = U (λRb). We conclude that Eq. (8) applies
whenever the reduced-coordinate constant-potential-energy
hypersurfaces constitute a single-parameter family through-
out the thermodynamic phase diagram.

In the present treatment Eq. (16) and thus Eq. (1) is de-
rived by a first-order expansion of the fundamental equation,
Eq. (14), which implies invariance of structure and dynam-
ics when isomorphs are defined as the configurational adia-
bats. The hidden-scale-invariance identity Eq. (2) is replaced
by Eq. (14), and the roles of the two abstract functions h(ρ)
and �̃(R̃) in Eq. (2) are taken over by the temperature T(ρ,
Sex) and the microscopic excess entropy function Sex(R̃). In
practice, the main changes compared to the original isomorph
theory are that CV is only isomorph invariant to first order31

because the proof of its isomorph invariance was based on
Eq. (16)27 and that, likewise, the density-scaling exponent is
only to first order a function merely of the density. An im-
plication is that the density-scaling phenomenon involves a
hierarchy of approximations: In the simplest case, the density
scaling exponent γ is constant, implying that the isomorphs
(=isochrones) are given by ργ /T = Const. In the more general
case described by the hidden scale invariance identity of the
original formulation of the isomorph theory based on Eq. (2),
the isomorphs are given by h(ρ)/T = Const. corresponding to
a density-scaling exponent (Eq. (19)) that may vary through-
out the phase diagram, but only as a function of density. Fi-
nally, the present formulation allows for the density-scaling
exponent to vary more generally.

For a pair-potential system with v(r) = ∑
n εn(r/σ )−n,

because of the structural invariance along an isomorph in re-
duced coordinates, one has U(ρ, Sex) = ∑

nCn(Sex)ρn/3.33, 34

This equation of state, which was previously derived by
Rosenfeld assuming quasiuniversality,41 implies T (ρ, Sex) =∑

n C ′
n(Sex)ρn/3. For the LJ system, this leads to the isomorph

equation [α12(Sex)ρ4 − α6(Sex)ρ2]/T = Const., which is vali-
dated numerically in Fig. 3.

In summary, this paper proposes a new definition of
Roskilde-simple systems, Eq. (7). Equivalently, one may use
Eq. (8) as the new definition. The new isomorph theory is
simpler than the original one and its predictions are more ac-
curate. The original isomorph theory is recovered as a first-
order approximation to the new one. The new definition does
not change the class of Roskilde-simple systems. This class is
still believed to include most van der Waals bonded and metal-
lic solids and liquids, as well as the weakly ionic or dipo-
lar systems, and exclude most hydrogen-bonded and cova-
lently bonded systems, as well as the strongly ionic or dipolar
systems.

ACKNOWLEDGMENTS

The center for viscous liquid dynamics “Glass and Time”
is sponsored by the Danish National Research Foundation via
Grant No. DNRF61.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.226.173.82 On: Tue, 25 Nov 2014 16:51:11



204502-8 T. B. Schrøder and J. C. Dyre J. Chem. Phys. 141, 204502 (2014)

APPENDIX: EXCESS THERMODYNAMICS AND
THE CONFIGURATION-SPACE MICROCANONICAL
EXPRESSION FOR THE EXCESS ENTROPY

Consider a system of N identical particles in volume V

with density ρ = N/V . The particle coordinates are given
by the 3N-dimensional vector R ≡ (r1, . . . , rN) and the cor-
responding reduced (dimensionless) coordinate vector is de-
fined by R̃ ≡ ρ1/3R. This Appendix derives an expression for
the microscopic virial, summarizes the definition of excess
(configurational) thermodynamic quantities, and derives the
microcanonical expression for the excess entropy at the state
point with density ρ and average potential energy U,

Sex(ρ,U )/kB = −N ln N + ln(Vol{R̃|U (ρ−1/3R̃) < U}) .

(A1)
Here “Vol” refers to the volume of the set in question, which
is the R̃ integral of the unity function over all configura-
tions R = ρ−1/3R̃ with potential energy below U, i.e., obey-
ing U(R) < U.

1. An expression for the microscopic virial

Consider the infinitesimal uniform expansion
R → (1 + dλ)R. The relative volume change is dV/V

= (1 + dλ)3 − 1 = 3 dλ, which implies d ln ρ = dρ/ρ

= −dV/V = −3 dλ, i.e., dλ = −(1/3) dln ρ. The change
of the configuration vector is given by dR = dλ R, so the
change of the potential energy is dU(R) = dλ R · ∇U(R)
= −(1/3) dln ρ R · ∇U(R). Comparing to the definition of
the virial Eq. (17) we get dU (R) = d ln ρ W (R). The reduced
coordinate R̃ is constant during the uniform expansion, so we
conclude that

W (R) =
(

∂U (R)

∂ ln ρ

)
R̃

. (A2)

2. Excess thermodynamic quantities

Recall from statistical mechanics that if the momentum
degrees of freedom are denoted by P ≡ (p1, . . . , pN) and
H(P, R) is the Hamiltonian, the Helmholtz free energy F is
given by the classical partition function as follows (where
β ≡ 1/kBT):10

e−βF = 1

N !

∫
dPdR
h3N

e−βH (P,R) . (A3)

The appearances of Planck’s constant h and the indistin-
guishability factor 1/N! ensure proper correspondence to
quantum mechanics. These factors are conveniently absorbed
by writing F = Fid + Fex in which Fid is the free energy
of an ideal gas at the same density and temperature, Fid =
NkBT(ln (�3ρ) − 1) where � = h/

√
2πmkBT is the thermal

de Broglie wavelength (m is the particle mass).10 The result of
these manipulations is that the excess free energy Fex is given
by

e−βFex =
∫

dR
V N

e−βU (R) . (A4)

In the case of free particles, U = 0, we get Fex = 0 as required
for consistency. Note that there is no 1/N! factor in Eq. (A4),

so Fex is formally the free energy of a system of distinguish-
able particles with no momentum coordinates.

Due to the separation F = Fid + Fex, all thermodynamic
quantities that are derivatives of F separate into an ideal-gas
contribution and an “excess” contribution. For instance, for
the entropy one has S = Sid + Sex in which Sex = −(∂Fex/∂T)ρ ,
the isochoric specific heat separates into a sum of two terms
and the well-known relation Cex

V = (∂Sex/∂ ln T )ρ applies,
etc.

The excess entropy obeys Sex < 0 because a liquid is al-
ways more ordered than an ideal gas at the same density and
temperature. As temperature goes to infinity, the system ap-
proaches the complete chaos of an ideal gas, so Sex → 0 for
T → ∞ at fixed density. The relation between excess entropy,
potential energy, and temperature is the usual one, i.e.,(

∂Sex

∂U

)
ρ

= 1

T
. (A5)

For the pressure the equation characterizing the average virial
W , i.e., the average of W (R) of Eq. (17), is pV = NkBT

+ W .10 This implies that p = pid + W/V . Thus the excess
pressure is W/V , a quantity that in terms of Fex is given by
W/V = −(∂Fex/∂V )T .

3. The microcanonical expression for the excess
entropy

The Heaviside theta function is denoted by �(x); recall
that this function is unity for positive arguments and zero for
negative. The dimensionless volume of the set of configura-
tions with potential energy less than U is denoted by �(U)
and given by

�(U ) =
∫

dR
V N

�(U − U (R)) . (A6)

If Xi is one of the 3N particle coordinates and ∂ j ≡ ∂/∂Xj, the
microcanonical average of Xi∂ jU(R) is by definition

〈Xi∂jU (R)〉mc =
∫

(dR/V N ) Xi(∂jU (R)) δ(U − U (R))∫
(dR/V N ) δ(U − U (R))

.

(A7)
Following Pauli,42 via the fact that �′(x) = δ(x) and a partial
integration we get for the numerator∫

dR
V N

Xi(∂jU (R)) δ(U − U (R))

= d

dU

∫
dR
V N

Xi(∂jU (R)) �(U − U (R))

= d

dU

∫
dR
V N

Xi(∂j (U (R) − U )) �(U − U (R))

= − d

dU
δij

∫
dR
V N

(U (R) − U ) �(U − U (R))

= δij

∫
dR
V N

�(U − U (R))

= δij �(U ) . (A8)
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The denominator of Eq. (A7) is �′(U), so all together we get

〈Xi∂jU (R)〉mc = δij

�(U )

�′(U )
. (A9)

Next, the canonical average of Xi∂ jU(R) is calculated.
If Z = ∫

dR/V N exp(−βU (R)) is the partition function we
have 〈Xi∂jU (R)〉can =∫

dR/V N Xi(∂jU (R)) exp(−βU (R))/
Z = − kBT

∫
dR /V N Xi∂j exp(−βU (R))/Z, which via a

partial integration gives kBTδij. Since averages are ensemble
independent (in contrast to fluctuations), Eq. (A9) implies

�(U )

�′(U )
= kBT . (A10)

Combined with Eq. (A5) this implies that (∂Sex/∂U)ρ = 1/T
= kB dln �(U)/dU, i.e.,

Sex = kB ln �(U ) + Const. (A11)

The constant, which is a function of density, is determined
from the above-mentioned boundary condition Sex → 0 for
T → ∞ at constant density. From Eq. (A6) we conclude that
the constant is zero. Rewriting finally the definition of �(U)
as an integral over the reduced coordinate vector R̃ leads
to Eq. (A1).
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