38 research outputs found

    IODP Expedition 334: An Investigation of the Sedimentary Record, Fluid Flow and State of Stress on Top of the Seismogenic Zone of an Erosive Subduction Margin

    Get PDF
    The Costa Rica Seismogenesis Project (CRISP) is an experiment to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Integrated Ocean Drililng Program (IODP) Expedition 334 by R/V JOIDES Resolution is the first step toward deep drilling through the aseismic and seismic plate boundary at the Costa Rica subduction zone offshore the Osa Peninsula where the Cocos Ridge is subducting beneath the Caribbean plate. Drilling operations included logging while drilling (LWD) at two slope sites (Sites U1378 and U1379) and coring at three slope sites (Sites U1378–1380) and at one site on the Cocos plate (Site U1381). For the first time the lithology, stratigraphy, and age of the slope and incoming sediments as well as the petrology of the subducting Cocos Ridge have been characterized at this margin. The slope sites recorded a high sediment accumulation rate of 160–1035m m.y.-1 possibly caused by on-land uplift triggered by the subduction of the Cocos Ridge. The geochemical data as well as the in situ temperature data obtained at the slope sites suggest that fluids are transported from greater depths. The geochemical profiles at Site U1381 reflect diffusional communication of a fluid with seawater-like chemistry and the igneous basement of the Cocos plate (Solomon et al., 2011; Vannucchi et al., 2012a). The present-day in situ stress orientation determined by borehole breakouts at Site U1378 in the middle slope and Site U1379 in the upper slope shows a marked change in stress state within ~12 km along the CRISP transect; that may correspond to a change from compression (middle slope) to extension (upper slope)

    Multiple post-peak metamorphic fluid infiltrations in southern Perlebandet, Sør Rondane Mountains, East Antarctica.

    Get PDF
    This paper reports multiple fluid infiltration events during retrograde metamorphism in the Sør Rondane Mountains, East Antarctica. Pelitic gneisses from southern part of Perlebandet have cordierite-biotite intergrowth rimming garnet, implying that garnet breakdown occurred by fluid infiltration. Using the Raman peak of CO₂ in cordierite and Cl-bearing composition in biotite, this study revealed that the cordierite-biotite intergrowth was formed in equilibrium with one-phase CO₂-Cl-H₂O fluid. The intergrowth texture is cut by thin selvages composed of Cl-bearing biotite, suggesting Cl-bearing fluid infiltration. Since andalusite is exclusively observed in the selvage, near isobaric cooling path is presumed for the pressure-temperature (P-T) path of these post-peak fluid-related reactions. The inconsistence with counter-clockwise P-T path reported from northern Perlebandet is probably due to the granodiorite/leucocratic granite bodies beneath the studied metamorphic rocks. In order to understand the tectonic evolution at the final stage of Gondwana amalgamation, therefore, effect of hidden igneous rocks needs to be taken into consideration

    Metamorphic rocks with different pressure–temperature–time paths bounded by a ductile shear zone at Oyayubi ridge, Brattnipene, Sør Rondane Mountains, East Antarctica

    Get PDF
    The Sør Rondane Mountains, East Antarctica have been thought to be situated in the collision zone between East and West Gondwana during the final stage of amalgamation of the Gondwana supercontinent. They are, therefore, recognized as a key region for understanding the geological phenomena during the collisions and for testing the proposed tectonic models. We identified metamorphic rocks with different pressure-temperature-time paths that are bounded by a ductile shear zone at Oyayubi ridge, Brattnipene, Sør Rondane Mountains. Based on field and microscopic observations, chemical analyses of minerals, and zircon U-Pb dating, the sillimanite-garnet-biotite gneisses (i.e., pelitic gneisses) from higher structural level show a peak metamorphism at ∼ 590 Ma that took place under conditions of ∼ 830-840 °C and 0.8-0.9 GPa, and these high-temperature conditions lasted until ∼ 550 Ma. These rocks underwent isothermal decompression and then retrograde hydration under lower pressure-temperature conditions than 530 °C and 0.4 GPa at ∼ 530 Ma. In contrast, the orthogneisses that consist of hornblende-biotite gneiss and garnet-clinopyroxene gneiss from lower structural levels did not undergo metamorphism at ∼ 600 Ma but underwent metamorphism at ∼ 570 Ma and reached peak conditions of 700-760 °C and 0.6-0.9 GPa at ∼ 560-550 Ma. These observations suggest thrusting of the pelitic gneiss over the orthogneiss at ∼ 570-550 Ma, causing a prograde metamorphism of the orthogneisses and a decompression of the pelitic gneisses as well as uplift and subsequent rapid denudation. The results indicate two stages of collision in the Sør Rondane Mountains and that the ductile shear zone bounding the pelitic gneiss and orthogneiss units may have been part of the continental plate collision boundary at ∼ 570-550 Ma

    Fault weakening caused by smectite swelling

    No full text
    The large slip along the shallow subduction interface during the 2011 Tohoku-Oki earthquake (M(w)9.0) caused a huge tsunami that struck the northeast coast of Honshu, Japan. The Integrated Ocean Drilling Program Expedition 343 JFAST program revealed that the fault zone is composed primarily of smectite. Our swelling experiments using the fault material demonstrated that the swelling pressure systematically increases with a decrease in sample porosity. Based on in situ porosity estimations in the IODP borehole, the swelling pressure of the fault is as high as 8 MPa, which is comparable to the effective normal stress at the drill site (similar to 7 MPa). This also suggests that the modified effective confining pressure of the fault is quite low or potentially zero, meaning that fault strength is governed mainly by cohesion rather than frictional strength. The fault may therefore be intrinsically weak, which could enhance the coseismic displacement toward the trench when earthquake slip propagates from depth
    corecore