119 research outputs found
Targeting the epigenome: effects of epigenetic treatment strategies on genomic stability in healthy human cells
Epigenetic treatment concepts have long been ascribed as being tumour-selective. Over the last decade, it has become evident that epigenetic mechanisms are essential for a wide range of intracellular functions in healthy cells as well. Evaluation of possible side-effects and their underlying mechanisms in healthy human cells is necessary in order to improve not only patient safety, but also to support future drug development. Since epigenetic regulation directly interacts with genomic and chromosomal packaging density, increasing genomic instability may be a result subsequent to drug-induced epigenetic modifications. This review highlights past and current research efforts on the influence of epigenetic modification on genomic stability in healthy human cells
Nicotinamide Inhibits Alkylating Agent-Induced Apoptotic Neurodegeneration in the Developing Rat Brain
BACKGROUND: Exposure to the chemotherapeutic alkylating agent thiotepa during brain development leads to neurological complications arising from neurodegeneration and irreversible damage to the developing central nerve system (CNS). Administration of single dose of thiotepa in 7-d postnatal (P7) rat triggers activation of apoptotic cascade and widespread neuronal death. The present study was aimed to elucidate whether nicotinamide may prevent thiotepa-induced neurodegeneration in the developing rat brain. METHODOLOGY/PRINCIPAL FINDINGS: Neuronal cell death induced by thiotepa was associated with the induction of Bax, release of cytochrome-c from mitochondria into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1). Post-treatment of developing rats with nicotinamide suppressed thiotepa-induced upregulation of Bax, reduced cytochrome-c release into the cytosol and reduced expression of activated caspase-3 and cleavage of PARP-1. Cresyl violet staining showed numerous dead cells in the cortex hippocampus and thalamus; post-treatment with nicotinamide reduced the number of dead cells in these brain regions. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) and immunohistochemical analysis of caspase-3 show that thiotepa-induced cell death is apoptotic and that it is inhibited by nicotinamide treatment. CONCLUSION: Nicotinamide (Nic) treatment with thiotepa significantly improved neuronal survival and alleviated neuronal cell death in the developing rat. These data demonstrate that nicotinamide shows promise as a therapeutic and neuroprotective agent for the treatment of neurodegenerative disorders in newborns and infants
Histone deacetylase inhibitors: clinical implications for hematological malignancies
Histone modifications have widely been implicated in cancer development and progression and are potentially reversible by drug treatments. The N-terminal tails of each histone extend outward through the DNA strand containing amino acid residues modified by posttranslational acetylation, methylation, and phosphorylation. These modifications change the secondary structure of the histone protein tails in relation to the DNA strands, increasing the distance between DNA and histones, and thus allowing accessibility of transcription factors to gene promoter regions. A large number of HDAC inhibitors have been synthesized in the last few years, most being effective in vitro, inducing cancer cells differentiation or cell death. The majority of the inhibitors are in clinical trials, unlike the suberoylanilide hydroxamic acid, a pan-HDACi, and Romidepsin (FK 228), a class I-selective HDACi, which are only approved in the second line treatment of refractory, persistent or relapsed cutaneous T-cell lymphoma, and active in approximately 150 clinical trials, in monotherapy or in association. Preclinical studies investigated the use of these drugs in clinical practice, as single agents and in combination with chemotherapy, hypomethylating agents, proteasome inhibitors, and MTOR inhibitors, showing a significant effect mostly in hematological malignancies. The aim of this review is to focus on the biological features of these drugs, analyzing the possible mechanism(s) of action and outline an overview on the current use in the clinical practice
Clinical and laboratory experience of vorinostat (suberoylanilide hydroxamic acid) in the treatment of cutaneous T-cell lymphoma
The most common cutaneous T-cell lymphomas (CTCLs) – mycosis fungoides (MF) and Sézary Syndrome – are characterised by the presence of clonally expanded, skin-homing helper-memory T cells exhibiting abnormal apoptotic control mechanisms. Epigenetic modulation of genes that induce apoptosis and differentiation of malignant T cells may therefore represent an attractive new strategy for targeted therapy for T-cell lymphomas. In vitro studies show that vorinostat (suberoylanilide hydroxamic acid or SAHA), an oral inhibitor of class I and II histone deacetylases, induces selective apoptosis of malignant CTCL cell lines and peripheral blood lymphocytes from CTCL patients at clinically achievable doses. In a Phase IIa clinical trial, vorinostat therapy achieved a meaningful partial response (>50% reduction in disease burden) in eight out of 33 (24%) patients with heavily pretreated, advanced refractory CTCL. The most common major toxicities of oral vorinostat therapy were fatigue and gastrointestinal symptoms (diarrhoea, altered taste, nausea, and dehydration from not eating). Thrombocytopenia was dose limiting in patients receiving oral vorinostat at the higher dose induction levels of 300 mg twice daily for 14 days. These studies suggest that vorinostat represents a promising new agent in the treatment of CTCL patients. Additional studies are underway to define the exact mechanism (s) of by which vorinostat induces selective apoptosis in CTCL cells and to further evaluate the antitumour efficacy of vorinostat in a Phase IIb study in CTCL patients
Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect
The histone deacetylase inhibitors (HDACi) have demonstrated anticancer efficacy across a range of malignancies, most impressively in the hematological cancers. It is uncertain whether this clinical efficacy is attributable predominantly to their ability to induce apoptosis and differentiation in the cancer cell, or to their ability to prime the cell to other pro-death stimuli such as those from the immune system. HDACi-induced apoptosis occurs through altered expression of genes encoding proteins in both intrinsic and extrinsic apoptotic pathways; through effects on the proteasome/aggresome systems; through the production of reactive oxygen species, possibly by directly inducing DNA damage; and through alterations in the tumor microenvironment. In addition HDACi increase the immunogenicity of tumor cells and modulate cytokine signaling and potentially T-cell polarization in ways that may contribute the anti-cancer effect in vivo. Here, we provide an overview of current thinking on the mechanisms of HDACi activity, with attention given to the hematological malignancies as well as scientific observations arising from the clinical trials. We also focus on the immune effects of these agents
Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits
Background
Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation.
Objective
The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry.
Results
The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior.
Conclusions
Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression
Comparative metabolomics of muscle interstitium fluid in human trapezius myalgia: an in vivo microdialysis study
- …
