138 research outputs found

    A treatment applying a biomechanical device to the feet of patients with knee osteoarthritis results in reduced pain and improved function: a prospective controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study examined the effect of treatment with a novel biomechanical device on the level of pain and function in patients with knee OA.</p> <p>Methods</p> <p>Patients with bilateral knee OA were enrolled to active and control groups. Patients were evaluated at baseline, at 4 weeks and at the 8-week endpoint. A novel biomechanical device was individually calibrated to patients from the active group. Patients from the control group received an identical foot-worn platform without the biomechanical elements. Primary outcomes were the WOMAC Index and ALF assessments.</p> <p>Results</p> <p>There were no baseline differences between the groups. At 8 weeks, the active group showed a mean improvement of 64.8% on the WOMAC pain scale, a mean improvement of 62.7% on the WOMAC function scale, and a mean improvement of 31.4% on the ALF scale. The control group demonstrated no improvement in the above parameters. Significant differences were found between the active and control groups in all the parameters of assessment.</p> <p>Conclusions</p> <p>The biomechanical device and treatment methodology is effective in significantly reducing pain and improving function in knee OA patients.</p> <p>The study is registered at clinicaltrials.gov, identifier NCT00457132, <url>http://www.clinicaltrials.gov/ct/show/NCT00457132?order=1</url></p

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    Prevalence of Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma in Upper Egypt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudoexfoliation (PXF) is a recognized risk factor for developing cataract, glaucoma and lens dislocation. PXF is also associated with increased risk of complications during cataract surgery due to poor mydriasis and zonular weakness. The aim of this study is to report the prevalence of pseudoexfoliation among Upper Egyptians attending the ophthalmology clinic of Assiut University Hospital.</p> <p>Methodology</p> <p>A retrospective, chart review study conducted in the period from February 2002 to August 2009. A total of 7738 patients aged 40 years or older attending the general ophthalmic clinics were included in this study. A detailed evaluation including ophthalmic and general history, slit lamp biomicroscopy, intraocular pressure measurement, gonioscopy and dilated eye examination were performed. Patients with pseudoexfoliative material on the anterior lens surface and ⁄ or the pupillary margin in either or both eyes were labeled as having PXF.</p> <p>Results</p> <p>Out of the 7738 patients included, three hundred twenty (4.14%) subjects had PXF. Mean age of PXF group was 68.15 years (SD 8.16, range 40-92 years). PXF was bilateral in 82.2% of cases. It was significantly associated with cataract, glaucoma and hearing loss. Of the PXF patients, 65% had cataract, 30.3% had glaucoma and 8.1% had hearing loss.</p> <p>Conclusion</p> <p>Pseudoexfoliation appears to be a common disorder in older individuals in Upper Egypt.</p

    Re-Annotation Is an Essential Step in Systems Biology Modeling of Functional Genomics Data

    Get PDF
    One motivation of systems biology research is to understand gene functions and interactions from functional genomics data such as that derived from microarrays. Up-to-date structural and functional annotations of genes are an essential foundation of systems biology modeling. We propose that the first essential step in any systems biology modeling of functional genomics data, especially for species with recently sequenced genomes, is gene structural and functional re-annotation. To demonstrate the impact of such re-annotation, we structurally and functionally re-annotated a microarray developed, and previously used, as a tool for disease research. We quantified the impact of this re-annotation on the array based on the total numbers of structural- and functional-annotations, the Gene Annotation Quality (GAQ) score, and canonical pathway coverage. We next quantified the impact of re-annotation on systems biology modeling using a previously published experiment that used this microarray. We show that re-annotation improves the quantity and quality of structural- and functional-annotations, allows a more comprehensive Gene Ontology based modeling, and improves pathway coverage for both the whole array and a differentially expressed mRNA subset. Our results also demonstrate that re-annotation can result in a different knowledge outcome derived from previous published research findings. We propose that, because of this, re-annotation should be considered to be an essential first step for deriving value from functional genomics data

    Bad news from Fallujah

    Get PDF
    This study uses the thematic analysis developed by the Glasgow University Media Group to explore how the US, UK and German national press covered the US/Coalition assault on the Iraqi city of Fallujah in November 2004. The study relies on quantitative and qualitative full text content analyses to assess 428 news, editorial and commentary items. The article suggests that, while government and military officials of the US/Coalition had argued the military ‘operation’ was necessary to secure Iraq and defeat an ‘insurgency’, organisations and actors from Iraqi society refer to the ‘operation’ as ‘collective punishment’ and a ‘massacre’ that targeted the Iraqi population. The article investigates how the press represented each of these perspectives. The findings suggest that the press overemphasised the US/Coalition perspective despite striking counter evidence. Critical aspects of coverage largely focused on tactical elements of the military dimension of the event. The article concludes that such findings are in accord with hegemonic models of media performance

    Update on inflammatory breast cancer

    Get PDF
    Inflammatory breast cancer (IBC) is both the least frequent and the most severe form of epithelial breast cancer. The diagnosis is based on clinical inflammatory signs and is reinforced by pathological findings. Significant progress has been made in the management of IBC in the past 20 years. Yet survival among IBC patients is still only one-half that among patients with non-IBC. Identification of the molecular determinants of IBC would probably lead to more specific treatments and to improved survival. In the present article we review recent advances in the molecular pathogenesis of IBC. A more comprehensive view will probably be obtained by pan-genomic analysis of human IBC samples, and by functional in vitro and in vivo assays. These approaches may offer better patient outcome in the near future

    Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics

    Get PDF
    AbstractThe circadian timing system plays a key role in orchestrating lipid metabolism. In concert with the solar cycle, the circadian system ensures that daily rhythms in lipid absorption, storage, and transport are temporally coordinated with rest-activity and feeding cycles. At the cellular level, genes involved in lipid synthesis and fatty acid oxidation are rhythmically activated and repressed by core clock proteins in a tissue-specific manner. Consequently, loss of clock gene function or misalignment of circadian rhythms with feeding cycles (e.g., in shift work) results in impaired lipid homeostasis. Herein, we review recent progress in circadian rhythms research using lipidomics, i.e., large-scale profiling of lipid metabolites, to characterize circadian-regulated lipid pathways in mammals. In mice, novel regulatory circuits involved in fatty acid metabolism have been identified in adipose tissue, liver, and muscle. Extensive diversity in circadian regulation of plasma lipids has also been revealed in humans using lipidomics and other metabolomics approaches. In future studies, lipidomics platforms will be increasingly used to better understand the effects of genetic variation, shift work, food intake, and drugs on circadian-regulated lipid pathways and metabolic health

    Transcriptional Profiling of Human Liver Identifies Sex-Biased Genes Associated with Polygenic Dyslipidemia and Coronary Artery Disease

    Get PDF
    Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC) that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell metabolic processes, and may help explain sex differences in lipid profiles associated with sex differential risk of coronary artery disease
    corecore