572 research outputs found
Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels
Swimming micro robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming micro organisms, micro robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics (CFD) modeling and analysis of the flow due to the motion of micro robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged for-ward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions
Constraining Bosonic Supersymmetry from Higgs results and 8 TeV ATLAS multi-jets plus missing energy data
The collider phenomenology of models with Universal Extra Dimensions (UED) is
surprisingly similar to that of supersymmetric (SUSY) scenarios. For each
level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic
(bosonic) analog in SUSY and thus UED scenarios are often known as bosonic
supersymmetry. The minimal version of UED (mUED) gives rise to a
quasi-degenerate particle spectrum at each KK-level and thus, can not explain
the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of
the Large Hadron Collider (LHC) experiment. However, in the non-minimal version
of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be
easily explained via the suitable choice of boundary localized kinetic (BLK)
terms for higher dimensional fermions and gauge bosons. BLK terms remove the
degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks
and gluons at the LHC gives rise to hard jets, leptons and large missing energy
in the final state. These final states are studied in details by the ATLAS and
CMS collaborations in the context of SUSY scenarios. We find that the absence
of any significant deviation of the data from the Standard Model (SM)
prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and
gluons.Comment: 19 page
Nutritional Factors and Susceptibility to Arsenic-Caused Skin Lesions in West Bengal, India
There has been widespread speculation about whether nutritional deficiencies increase the susceptibility to arsenic health effects. This is the first study to investigate whether dietary micronutrient and macronutrient intake modulates the well-established human risk of arsenic-induced skin lesions, including alterations in skin pigmentation and keratoses. The study was conducted in West Bengal, India, which along with Bangladesh constitutes the largest population in the world exposed to arsenic from drinking water. In this case–control study design, cases were patients with arsenic-induced skin lesions and had < 500 μg/L arsenic in their drinking water. For each case, an age- and sex-matched control was selected from participants of a 1995–1996 cross-sectional survey, whose drinking water at that time also contained < 500 μg/L arsenic. Nutritional assessment was based on a 24-hr recall for major dietary constituents and a 1-week recall for less common constituents. Modest increases in risk were related to being in the lowest quintiles of intake of animal protein [odds ratio (OR) = 1.94; 95% confidence interval (CI), 1.05–3.59], calcium (OR = 1.89; 95% CI, 1.04–3.43), fiber (OR = 2.20; 95% CI, 1.15–4.21), and folate (OR = 1.67; 95% CI, 0.87–3.2). Conditional logistic regression suggested that the strongest associations were with low calcium, low animal protein, low folate, and low fiber intake. Nutrient intake was not related to arsenic exposure. We conclude that low intake of calcium, animal protein, folate, and fiber may increase susceptibility to arsenic-caused skin lesions. However, in light of the small magnitude of increased risks related to these dietary deficiencies, prevention should focus on reducing exposure to arsenic
SEDLIN Forms Homodimers: Characterisation of SEDLIN Mutations and Their Interactions with Transcription Factors MBP1, PITX1 and SF1
BACKGROUND: SEDLIN, a 140 amino acid subunit of the Transport Protein Particle (TRAPP) complex, is ubiquitously expressed and interacts with the transcription factors c-myc promoter-binding protein 1 (MBP1), pituitary homeobox 1 (PITX1) and steroidogenic factor 1 (SF1). SEDLIN mutations cause X-linked spondyloepiphyseal dysplasia tarda (SEDT). METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of 4 missense (Asp47Tyr, Ser73Leu, Phe83Ser and Val130Asp) and the most C-terminal nonsense (Gln131Stop) SEDT-associated mutations on interactions with MBP1, PITX1 and SF1 by expression in COS7 cells. Wild-type SEDLIN was present in the cytoplasm and nucleus and interacted with MBP1, PITX1 and SF1; the SEDLIN mutations did not alter these subcellular localizations or the interactions. However, SEDLIN was found to homodimerize, and the formation of dimers between wild-type and mutant SEDLIN would mask a loss in these interactions. A mammalian SEDLIN null cell-line is not available, and the interactions between SEDLIN and the transcription factors were therefore investigated in yeast, which does not endogenously express SEDLIN. This revealed that all the SEDT mutations, except Asp47Tyr, lead to a loss of interaction with MBP1, PITX1 and SF1. Three-dimensional modelling studies of SEDLIN revealed that Asp47 resides on the surface whereas all the other mutant residues lie within the hydrophobic core of the protein, and hence are likely to affect the correct folding of SEDLIN and thereby disrupt protein-protein interactions. CONCLUSIONS/SIGNIFICANCE: Our studies demonstrate that SEDLIN is present in the nucleus, forms homodimers and that SEDT-associated mutations cause a loss of interaction with the transcription factors MBP1, PITX1 and SF1
Lobe-Specific Calcium Binding in Calmodulin Regulates Endothelial Nitric Oxide Synthase Activation
BACKGROUND: Human endothelial nitric oxide synthase (eNOS) requires calcium-bound calmodulin (CaM) for electron transfer but the detailed mechanism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using a series of CaM mutants with E to Q substitution at the four calcium-binding sites, we found that single mutation at any calcium-binding site (B1Q, B2Q, B3Q and B4Q) resulted in ∼2-3 fold increase in the CaM concentration necessary for half-maximal activation (EC50) of citrulline formation, indicating that each calcium-binding site of CaM contributed to the association between CaM and eNOS. Citrulline formation and cytochrome c reduction assays revealed that in comparison with nNOS or iNOS, eNOS was less stringent in the requirement of calcium binding to each of four calcium-binding sites. However, lobe-specific disruption with double mutations in calcium-binding sites either at N- (B12Q) or at C-terminal (B34Q) lobes greatly diminished both eNOS oxygenase and reductase activities. Gel mobility shift assay and flavin fluorescence measurement indicated that N- and C-lobes of CaM played distinct roles in regulating eNOS catalysis; the C-terminal EF-hands in its calcium-bound form was responsible for the binding of canonical CaM-binding domain, while N-terminal EF-hands in its calcium-bound form controlled the movement of FMN domain. Limited proteolysis studies further demonstrated that B12Q and B34Q induced different conformational change in eNOS. CONCLUSIONS: Our results clearly demonstrate that CaM controls eNOS electron transfer primarily through its lobe-specific calcium binding
Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for Gluco- and Galacto- Substituted mannans and Its calcium induced stability
Articles in International JournalsThis study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35) in polysaccharide recognition. CtCBM35 was cloned into pET28a (+) vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3) cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC). Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displaying significant association with konjac glucomannan (Ka = 14.3×104 M−1), carob galactomannan (Ka = 12.4×104 M−1) and negligible association (Ka = 12 µM−1) with insoluble mannan. Binding of CtCBM35 with polysaccharides which was calcium dependent exhibited two fold higher association in presence of 10 mM Ca2+ ion with konjac glucomannan (Ka = 41×104 M−1) and carob galactomannan (Ka = 30×104 M−1). The polysaccharide binding was further investigated by fluorescence spectrophotometric studies. On binding with carob galactomannan and konjac glucomannan the conformation of CtCBM35 changed significantly with regular 21 nm peak shifts towards lower quantum yield. The degree of association (Ka) with konjac glucomannan and carob galactomannan, 14.3×104 M−1 and 11.4×104 M−1, respectively, corroborated the findings from affinity electrophoresis. The association of CtCBM35with konjac glucomannan led to higher free energy of binding (ΔG) −25 kJ mole−1 as compared to carob galactomannan (ΔG) −22 kJ mole−1. On binding CtCBM35 with konjac glucomannan and carob galactomannan the hydrodynamic radius (RH) as analysed by dynamic light scattering (DLS) study, increased to 8 nm and 6 nm, respectively, from 4.25 nm in absence of ligand. The presence of 10 mM Ca2+ ions imparted stiffer orientation of CtCBM35 particles with increased RH of 4.52 nm. Due to such stiffer orientation CtCBM35 became more thermostable and its melting temperature was shifted to 70°C from initial 50°C
Drosophila Dynein Intermediate Chain Gene, Dic61B, Is Required for Spermatogenesis
This study reports the identification and characterization of a novel gene, Dic61B, required for male fertility in Drosophila. Complementation mapping of a novel male sterile mutation, ms21, isolated in our lab revealed it to be allelic to CG7051 at 61B1 cytogenetic region, since two piggyBac insertion alleles, CG7051c05439 and CG7051f07138 failed to complement. CG7051 putatively encodes a Dynein intermediate chain. All three mutants, ms21, CG7051c05439 and CG7051f07138, exhibited absolute recessive male sterility with abnormally coiled sperm axonemes causing faulty sperm individualization as revealed by Phalloidin staining in Don Juan-GFP background. Sequencing of PCR amplicons uncovered two point mutations in ms21 allele and confirmed the piggyBac insertions in CG7051c05439 and CG7051f07138 alleles to be in 5′UTR and 4th exon of CG7051 respectively, excision of which reverted the male sterility. In situ hybridization to polytene chromosomes demonstrated CG7051 to be a single copy gene. RT-PCR of testis RNA revealed defective splicing of the CG7051 transcripts in mutants. Interestingly, expression of cytoplasmic dynein intermediate chain, α, β, γ tubulins and α-spectrin was normal in mutants while ultra structural studies revealed defects in the assembly of sperm axonemes. Bioinformatics further highlighted the homology of CG7051 to axonemal dynein intermediate chain of various organisms, including DNAI1 of humans, mutations in which lead to male sterility due to immotile sperms. Based on these observations we conclude that CG7051 encodes a novel axonemal dynein intermediate chain essential for male fertility in Drosophila and rename it as Dic61B. This is the first axonemal Dic gene of Drosophila to be characterized at molecular level and shown to be required for spermatogenesis
Isolation of a Glucosamine Binding Leguminous Lectin with Mitogenic Activity towards Splenocytes and Anti-Proliferative Activity towards Tumor Cells
A dimeric 64-kDa glucosamine-specific lectin was purified from seeds of Phaseolus vulgaris cv. “brown kidney bean.” The simple 2-step purification protocol involved affinity chromatography on Affi-gel blue gel and gel filtration by FPLC on Superdex 75. The lectin was absorbed on Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Gel filtration on Superdex 75 yielded a major absorbance peak that gave a single 32-kDa band in SDS-PAGE. Hemagglutinating activity was completely preserved when the ambient temperature was in the range of 20°C–60°C. However, drastic reduction of the activity occurred at temperatures above 65°C. Full hemagglutinating activity of the lectin was observed at an ambient pH of 3 to 12. About 50% activity remained at pH 0–2, and only residual activity was observed at pH 13–14. Hemagglutinating activity of the lectin was inhibited by glucosamine. The brown kidney bean lectin elicited maximum mitogenic activity toward murine splenocytes at 2.5 µM. The mitogenic activity was nearly completely eliminated in the presence of 250 mM glucosamine. The lectin also increased mRNA expression of the cytokines IL-2, TNF-α and IFN-γ. The lectin exhibited antiproliferative activity toward human breast cancer (MCF7) cells, hepatoma (HepG2) cells and nasopharyngeal carcinoma (CNE1 and CNE2) cells with IC50 of 5.12 µM, 32.85 µM, 3.12 µM and 40.12 µM respectively after treatment for 24 hours. Flow cytometry with Annexin V and propidum iodide staining indicated apoptosis of MCF7 cells. Hoechst 33342 staining also indicated formation of apoptotic bodies in MCF7 cells after exposure to brown kidney bean lectin. Western blotting revealed that the lectin-induced apoptosis involved ER stress and unfolded protein response
A novel a-L-Arabinofuranosidase of Family 43 Glycoside Hydrolase (Ct43Araf ) from Clostridium thermocellum
Articles in International JournalsThe study describes a comparative analysis of biochemical, structural and functional properties of two recombinant
derivatives from Clostridium thermocellum ATCC 27405 belonging to family 43 glycoside hydrolase. The family 43 glycoside
hydrolase encoding a-L-arabinofuranosidase (Ct43Araf) displayed an N-terminal catalytic module CtGH43 (903 bp) followed
by two carbohydrate binding modules CtCBM6A (405 bp) and CtCBM6B (402 bp) towards the C-terminal. Ct43Araf and its
truncated derivative CtGH43 were cloned in pET-vectors, expressed in Escherichia coli and functionally characterized. The
recombinant proteins displayed molecular sizes of 63 kDa (Ct43Araf) and 34 kDa (CtGH43) on SDS-PAGE analysis. Ct43Araf
and CtGH43 showed optimal enzyme activities at pH 5.7 and 5.4 and the optimal temperature for both was 50uC. Ct43Araf
and CtGH43 showed maximum activity with rye arabinoxylan 4.7 Umg21 and 5.0 Umg21, respectively, which increased by
more than 2-fold in presence of Ca2+ and Mg2+ salts. This indicated that the presence of CBMs (CtCBM6A and CtCBM6B) did
not have any effect on the enzyme activity. The thin layer chromatography and high pressure anion exchange
chromatography analysis of Ct43Araf hydrolysed arabinoxylans (rye and wheat) and oat spelt xylan confirmed the release of
L-arabinose. This is the first report of a-L-arabinofuranosidase from C. thermocellum having the capacity to degrade both pnitrophenol-
a-L-arabinofuranoside and p-nitrophenol-a-L-arabinopyranoside. The protein melting curves of Ct43Araf and
CtGH43 demonstrated that CtGH43 and CBMs melt independently. The presence of Ca2+ ions imparted thermal stability to
both the enzymes. The circular dichroism analysis of CtGH43 showed 48% b-sheets, 49% random coils but only 3% a-helices
- …