166 research outputs found

    Kondo Quantum Criticality of Magnetic Adatoms in Graphene

    Full text link
    We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where the Kondo temperature scales as TKJJc1/3T_{K}\propto|J-J_{c}|^{1/3} near the critical coupling JcJ_{c}, and the local spin is effectively screened by a \emph{super-ohmic} bath. For this class, the RKKY interaction decays spatially with a fast power law 1/R7\sim1/R^{7}. Away from half filling, we show that the exchange coupling in graphene can be controlled across the quantum critical region by gating. We propose that the vicinity of the Kondo quantum critical point can be directly accessed with scanning tunneling probes and gating.Comment: 4.1 pages, 3 figures. Added erratum correcting exponent nu=1/3. All the other results remain vali

    Magnetic exchange mechanism for electronic gap opening in graphene

    Full text link
    We show within a local self-consistent mean-field treatment that a random distribution of magnetic adatoms can open a robust gap in the electronic spectrum of graphene. The electronic gap results from the interplay between the nature of the graphene sublattice structure and the exchange interaction between adatoms.The size of the gap depends on the strength of the exchange interaction between carriers and localized spins and can be controlled by both temperature and external magnetic field. Furthermore, we show that an external magnetic field creates an imbalance of spin-up and spin-down carriers at the Fermi level, making doped graphene suitable for spin injection and other spintronic applications.Comment: 5 pages, 5 figure

    Surface superconductivity in multilayered rhombohedral graphene: Supercurrent

    Full text link
    The supercurrent for the surface superconductivity of a flat-band multilayered rhombohedral graphene is calculated. Despite the absence of dispersion of the excitation spectrum, the supercurrent is finite. The critical current is proportional to the zero-temperature superconducting gap, i.e., to the superconducting critical temperature and to the size of the flat band in the momentum space

    Induced magnetism in transition metal intercalated graphitic systems

    Full text link
    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 {\mu}B to 4.10 {\mu}B, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.Comment: 13 pages, 3 figures, 1 tabl
    corecore