290 research outputs found

    Stratified slopes, numerical and empirical stability analysis

    Get PDF
    Urbanisation means that many natural slopes in and around cities are often subjected to cuts resulting in dramatic changes in the geometry of slope faces mostly by increasing slope angle which could lead to failures with catastrophic consequences. As most natural slopes are of nonhomogeneous layered nature, understanding the stability behaviour of such slopes will be of utmost importance. The current practice in analysing slopes of complicated nature, geometrically and materially, is mostly to apply simplifications sacrificing accuracy leading to use of large factors of safety, which could undermine analytical and economic feasibility of projects. In this research limit-equilibrium and finite element methods are used, respectively by OASYS Slope and PLAXIS 2D, to empirically and numerically model and analyse geometrically non-homogeneous stratified slopes with the aim of understanding the effects of non-homogeneity of geometry and materials on stability under various inclination angles of slope face. The analysis included determination of factors of safety as well as a sensitivity analysis looking into the combined effects of contributing parameters

    Use of a Natural Isotopic Signature in Otoliths to Evaluate Scale-Based Age Determination for American Shad

    Get PDF
    We used delta O-18 signatures in otoliths as a natural tag for hatch year to evaluate the scale-based age determination method used for adult American shad Alosa sapidissima in the York River, Virginia. Juveniles of the 2002 year-class exhibited high delta O-18 values in otolith cores that identified adult members of the cohort as they returned to spawn. Recruitment of the 2002 cohort was monitored for three consecutive years, identifying age-4, age-5, and age-6 individuals of the York River stock. The scale-based age determination method was not suitable for aging age-4, age-5, or age-6 American shad in the York River. On average, 50% of the individuals from the 2002 year-class were aged incorrectly using the scale-based method. These results suggest that the standard age determination method used for American shad is not applicable to the York River stock. Scientists and managers should use caution when applying scale-based age estimates to stock assessments for American shad in the York River and throughout their range, as the applicability of the scale-based method likely varies for each stock. This study highlights a promising new direction for otolith geochemistry to provide cohort-specific markers, and it identifies several factors that should be considered when applying the technique in the future

    A Coupled Land-Atmosphere Simulation Program (CLASP): Calibration and validation

    Get PDF
    We present a model and application designed to study the coupled land-atmosphere hydrologic cycle, following water from its inflow into a region by horizontal atmospheric transport through surface-atmosphere exchange processes and aquifer recharge to outflow as runoff and river discharge. The model includes a two-way water flow among its major reservoirs (atmosphere, vadose zone, groundwater, surface water, river). A unique feature of the model is that phreatophytic interactions are included when the water table intersects the root zone. The model emulates a uniform grid box of an atmospheric general circulation model, but with finer horizontal resolution for the land processes, and forms a test bed for developing continental-scale simulation of the hydrologic cycle. The model is calibrated using the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) observations for 1987 and validated using FIFE observations for 1988 and 1989. Four physical factors emerge as important for simulating the FIFE water cycle: effective relative humidity for initiating stable (large scale) condensation, length of the growing season, amount of available soil water, and cloud cover parameterization. Further evaluation uses water table and river discharge measurements for years up to 1993. The model simulates multiyear behavior in the hydrologic cycle reasonably well. Average differences between FIFE observations and simulated fluxes during the calibration period are only a few percent, including fluxes not specifically calibrated. Model-observation differences in surface sensible and latent heat fluxes are larger during the 1988 drought but recover to relatively small values for 1989, suggesting some difficulty in simulating hydrologic extremes occurring outside the calibration conditions. A model sensitivity study using statistical disaggregation to allow precipitation to fall on only a portion of the landscape indicates that spatial disaggregation of precipitation can have strong impact on groundwater storage and surface discharge, potentially improving agreement between observed and simulated streamflow. Water redistributed through the model\u27s aquifer-river network can at times raise the water table high enough for water to seep back to the vegetation root zone and increase evapotranspiration. During relatively dry periods, up to 33% of monthly evapotranspiration was derived from groundwater-supported evapotranspiration, emphasizing the need to quantify better aquifer-atmosphere interaction. The work also demonstrates the feasibility and utility of fully coupled water budgeting schemes

    Controls on modern tributary-junction alluvial fan occurrence and morphology: High Atlas Mountains, Morocco

    Get PDF
    Modern tributary-junction alluvial fans (cone-shaped depositional landforms formed in confined valley settings) were analysed from a 20-km-long reach of the Dades River in the distal part of the fold-thrust belt region in the south-central High Atlas Mountains of Morocco. Here, a deeply dissected network of ephemeral tributary streams and a perennial trunk drainage characterised by an arid mountain desert climate are configured onto a folded and thrust faulted Mesozoic sedimentary sequence. Out of 186 tributary streams, only 29 (16%) generated alluvial fans at their tributary junctions. The fan-generating catchments possess higher relief, longer lengths, lower gradients, and larger areas than nonfan-generating catchments. Whilst geologically, fan-generating catchments are underlain by folded / steeply dipping weak bedrock conducive to high sediment yield. Tributary-junction fans are built from debris flow or fluvial processes into open or confined canyon trunk valley settings. The proximity of the perennial trunk drainage combined with the valley morphology produces lobate or foreshortened trimmed fan forms. Analysis of fan (area, gradient, process), catchment (area, relief, length, gradient), and tributary valley (width) variables reveals weak morphometric relationships, highlighted by residual plots that show dominance of smaller and lower gradient than expected fan forms. These morphometric relationships can be explained by interplay between the catchment and trunk drainage geology, morphology, climate, and flood regime that are combined into a conceptual ‘build and reset’ model. Ephemeral tributary-junction fans develop progressively during annual localised winter-spring storm events, attempting to build toward a morphological equilibrium. However, the fans never reach an equilibrium morphological form as they are reset by rare (>10 year) large floods along the River Dades that are linked to regional incursions of Atlantic low pressure troughs. The model highlights the spatial and temporal variability of tributary-junction fan building and illustrates the connectivity / coupling importance of such features in dryland mountainous terrains

    Fish Assemblage Relationships with Physical Habitat in Wadeable Iowa Streams

    Get PDF
    Fish assemblages play a key role in stream ecosystems and are influenced by physical habitat. We analyzed fish assemblages and physical habitat at 93 randomly selected sites on second- through fifth-order wadeable Iowa streams to explore fish assemblage relationships with reach-scale physical habitat in this agriculturally dominated landscape. Sites were sampled using DC electrofishing and the wadeable streams physical habitat protocol of the U.S. Environmental Protection Agency\u27s Environmental Monitoring and Assessment Program. In all, 82 species were collected, with species richness at sites averaging 14. Over 80% of the sites had fish assemblages rated as fair (53%) or poor (32%) based on a fish index of biotic integrity (FIBI). Ordination separated sites from the two major river drainages along an axis of impairment, with sites in the Missouri River drainage exhibiting lower FIBI scores than sites in the Mississippi River drainage. Physical habitat at most sites exhibited fine substrates, eroding banks, and low-gradient, nonmeandering channel and was dominated by glides. Thirty physical habitat variables describing channel morphology, channel cross section and bank morphology, fish cover, human disturbance, large woody debris, relative bed stability, residual pool, riparian vegetation, and substrate differed significantly between sites with FIBI scores rated as poor and those with FIBI scores rated as good or excellent. Eighteen physical habitat variables were significant predictors of fish assemblage metrics and FIBI in multiple linear regression models, with adjusted R 2 values ranging from 0.12 to 0.58. Seventy percent of the model coefficients reflected substrate (40%), residual pool (21%), and fish cover (9%) variables. Fish assemblages in wadeable Iowa streams are strongly associated with the quality of physical habitat. Thus, understanding and addressing the determinants of physical habitat are crucial for managing streams in Iowa and other agricultural regions
    • 

    corecore