231 research outputs found

    Quantum Spin Formulation of the Principal Chiral Model

    Get PDF
    We formulate the two-dimensional principal chiral model as a quantum spin model, replacing the classical fields by quantum operators acting in a Hilbert space, and introducing an additional, Euclidean time dimension. Using coherent state path integral techniques, we show that in the limit in which a large representation is chosen for the operators, the low energy excitations of the model describe a principal chiral model in three dimensions. By dimensional reduction, the two-dimensional principal chiral model of classical fields is recovered.Comment: 3pages, LATTICE9

    From Spin Ladders to the 2-d O(3) Model at Non-Zero Density

    Get PDF
    The numerical simulation of various field theories at non-zero chemical potential suffers from severe complex action problems. In particular, QCD at non-zero quark density can presently not be simulated for that reason. A similar complex action problem arises in the 2-d O(3) model -- a toy model for QCD. Here we construct the 2-d O(3) model at non-zero density via dimensional reduction of an antiferromagnetic quantum spin ladder in a magnetic field. The complex action problem of the 2-d O(3) model manifests itself as a sign problem of the ladder system. This sign problem is solved completely with a meron-cluster algorithm.Comment: Based on a talk by U.-J. Wiese, 6 pages, 12 figures, to be published in computer physics communication

    A Multi-level Algorithm for Quantum-impurity Models

    Full text link
    A continuous-time path integral Quantum Monte Carlo method using the directed-loop algorithm is developed to simulate the Anderson single-impurity model in the occupation number basis. Although the method suffers from a sign problem at low temperatures, the new algorithm has many advantages over conventional algorithms. For example, the model can be easily simulated in the Kondo limit without time discretization errors. Further, many observables including the impurity susceptibility and a variety of fermionic observables can be calculated efficiently. Finally the new approach allows us to explore a general technique, called the multi-level algorithm, to solve the sign problem. We find that the multi-level algorithm is able to generate an exponentially large number of configurations with an effort that grows as a polynomial in inverse temperature such that configurations with a positive sign dominate over those with negative signs. Our algorithm can be easily generalized to other multi-impurity problems.Comment: 9 pages, 8 figure

    Cluster Algorithms for Quantum Impurity Models and Mesoscopic Kondo Physics

    Full text link
    Nanoscale physics and dynamical mean field theory have both generated increased interest in complex quantum impurity problems and so have focused attention on the need for flexible quantum impurity solvers. Here we demonstrate that the mapping of single quantum impurity problems onto spin-chains can be exploited to yield a powerful and extremely flexible impurity solver. We implement this cluster algorithm explicitly for the Anderson and Kondo Hamiltonians, and illustrate its use in the ``mesoscopic Kondo problem''. To study universal Kondo physics, a large ratio between the effective bandwidth DeffD_\mathrm{eff} and the temperature TT is required; our cluster algorithm treats the mesoscopic fluctuations exactly while being able to approach the large Deff/TD_\mathrm{eff}/T limit with ease. We emphasize that the flexibility of our method allows it to tackle a wide variety of quantum impurity problems; thus, it may also be relevant to the dynamical mean field theory of lattice problems.Comment: 4 pages, 3 figure

    Two dimensional SU(N) x SU(N) chiral models on the lattice

    Full text link
    Lattice SU(N)×SU(N)SU(N)\times SU(N) chiral models are analyzed by strong and weak coupling expansions and by numerical simulations. 12th12^{th} order strong coupling series for the free and internal energy are obtained for all N≄6N\geq 6. Three loop contributions to the internal energy and to the lattice ÎČ\beta-function are evaluated for all NN and non-universal corrections to the asymptotic Λ\Lambda parameter are computed in the ``temperature'' and the ``energy'' scheme. Numerical simulations confirm a faster approach to asymptopia of the energy scheme. A phenomenological correlation between the peak in the specific heat and the dip of the ÎČ\beta-function is observed. Tests of scaling are performed for various physical quantities, finding substantial scaling at ÎŸâ‰ł2\xi \gtrsim 2. In particular, at N=6N=6 three different mass ratios are determined numerically and found in agreement, within statistical errors of about 1\%, with the theoretical predictions from the exact S-matrix theory.Comment: pre-print IFUP 29/93, revised version, 12 pages, 10 figures avaliable on request by FAX or by mail. REVTE

    Pions versus Magnons: From QCD to Antiferromagnets and Quantum Hall Ferromagnets

    Full text link
    The low-energy dynamics of pions and magnons -- the Goldstone bosons of the strong interactions and of magnetism -- are analogous in many ways. The electroweak interactions of pions result from gauging an SU(2)_L x U(1)_Y symmetry which then breaks to the U(1)_{em} gauge symmetry of electromagnetism. The electromagnetic interactions of magnons arise from gauging not only U(1)_{em} but also the SU(2)_s spin rotational symmetry, with the electromagnetic fields E and B appearing as non-Abelian vector potentials. Pions couple to electromagnetism through a Goldstone-Wilczek current that represents the baryon number of Skyrmions and gives rise to the decay \pi^0 to \gamma \gamma. Similarly, magnons may couple to an analogue of the Goldstone-Wilczek current for baby-Skyrmions which induces a magnon-two-photon vertex. The corresponding analogue of photon-axion conversion is photon-magnon conversion in an external magnetic field. The baryon number violating decay of Skyrmions can be catalyzed by a magnetic monopole via the Callan-Rubakov effect. Similarly, baby-Skyrmion decay can be catalyzed by a charged wire. For more than two flavors, the Wess-Zumino-Witten term enters the low-energy pion theory with a quantized prefactor N_c -- the number of quark colors. The magnon analogue of this prefactor is the anyon statistics angle \theta which need not be quantized.Comment: 34 pages, no figure

    Two dimensional SU(N)xSU(N) Chiral Models on the Lattice (II): the Green's Function

    Full text link
    Analytical and numerical methods are applied to principal chiral models on a two-dimensional lattice and their predictions are tested and compared. New techniques for the strong coupling expansion of SU(N) models are developed and applied to the evaluation of the two-point correlation function. The momentum-space lattice propagator is constructed with precision O(\beta^{10}) and an evaluation of the correlation length is obtained for several different definitions. Three-loop weak coupling contributions to the internal energy and to the lattice ÎČ\beta and Îł\gamma functions are evaluated for all N, and the effect of adopting the ``energy'' definition of temperature is computed with the same precision. Renormalization-group improved predictions for the two-point Green's function in the weak coupling ( continuum ) regime are obtained and successfully compared with Monte Carlo data. We find that strong coupling is predictive up to a point where asymptotic scaling in the energy scheme is observed. Continuum physics is insensitive to the effects of the large N phase transition occurring in the lattice model. Universality in N is already well established for N≄10N \ge 10 and the large N physics is well described by a ``hadronization'' picture.Comment: Revtex, 37 pages, 16 figures available on request by FAX or mai

    Classical integrability of Schrodinger sigma models and q-deformed Poincare symmetry

    Get PDF
    We discuss classical integrable structure of two-dimensional sigma models which have three-dimensional Schrodinger spacetimes as target spaces. The Schrodinger spacetimes are regarded as null-like deformations of AdS_3. The original AdS_3 isometry SL(2,R)_L x SL(2,R)_R is broken to SL(2,R)_L x U(1)_R due to the deformation. According to this symmetry, there are two descriptions to describe the classical dynamics of the system, 1) the SL(2,R)_L description and 2) the enhanced U(1)_R description. In the former 1), we show that the Yangian symmetry is realized by improving the SL(2,R)_L Noether current. Then a Lax pair is constructed with the improved current and the classical integrability is shown by deriving the r/s-matrix algebra. In the latter 2), we find a non-local current by using a scaling limit of warped AdS_3 and that it enhances U(1)_R to a q-deformed Poincare algebra. Then another Lax pair is presented and the corresponding r/s-matrices are also computed. The two descriptions are equivalent via a non-local map.Comment: 20 pages, no figure, further clarification and references adde

    Fermion-Boson Interactions and Quantum Algebras

    Get PDF
    Quantum Algebras (q-algebras) are used to describe interactions between fermions and bosons. Particularly, the concept of a su_q(2) dynamical symmetry is invoked in order to reproduce the ground state properties of systems of fermions and bosons interacting via schematic forces. The structure of the proposed su_q(2) Hamiltonians, and the meaning of the corresponding deformation parameters, are discussed.Comment: 20 pages, 10 figures. Physical Review C (in press

    Topological Lattice Actions

    Full text link
    We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility \chi_t = \l/V is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.Comment: 38 pages, 12 figure
    • 

    corecore