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Abstract: We discuss classical integrable structure of two-dimensional sigma models

which have three-dimensional Schrödinger spacetimes as target spaces. The Schrödinger

spacetimes are regarded as null-like deformations of AdS3. The original AdS3 isometry

SL(2,R)L×SL(2,R)R is broken to SL(2,R)L×U(1)R due to the deformation. Accord-

ing to this symmetry, there are two descriptions to describe the classical dynamics of

the system, 1) the SL(2,R)L description and 2) the enhanced U(1)R description. In the

former 1), we show that the Yangian symmetry is realized by improving the SL(2,R)L
Noether current. Then a Lax pair is constructed with the improved current and the

classical integrability is shown by deriving the r/s-matrix algebra. In the latter 2), we

find a non-local current by using a scaling limit of warped AdS3 and that it enhances

U(1)R to a q-deformed Poincaré algebra. Then another Lax pair is presented and the

corresponding r/s-matrices are also computed. The two descriptions are equivalent via

a non-local map.
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1 Introduction

The AdS/CFT correspondence [1, 2] is the most concrete realization of dualities be-

tween gauge theories and gravitational (string) theories. In the recent progress the

integrable structure played an important role in checking it at non-BPS region (For a

comprehensive review, see [3]). The integrability of sigma models on AdS spaces and

spheres [4, 5] is closely related to the integrable structure behind AdS/CFT and a key

ingredient is that AdS spaces and spheres are represented by symmetric cosets. This

feature was utilized to classify the coset geometries which can potentially be studied

holographically [6]. It is well known that symmetric coset sigma models are classically

integrable and infinite-dimensional symmetries, which are often called Yangian [7, 8],

are realized (For early works and a review, see [9, 10] and [11]).

Recently, gravity duals for non-relativistic CFTs [12, 13] are intensively studied

in relation to the holographic condensed matter scenario. Schrödinger spacetimes are

proposed as gravity duals for non-relativistic CFTs [14] possessing non-relativistic con-

formal symmetry called Schrödinger symmetry [15, 16]. It is an interesting issue to
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consider the integrability of sigma models which have the Schrödinger spacetimes as

target spaces1. The Schrödinger spacetimes are represented by non-symmetric coset

[20], and hence the standard argument for symmetric cosets is not applicable directly

to Schrödinger spacetimes.

In this paper we will reveal the classical integrable structure of two-dimensional

sigma models defined on three-dimensional Schrödinger spacetimes, which are called

“Schrödinger sigma models” here. The metric of the Schrödinger spacetime is

ds2 = L2
[
dρ2 − 2e−2ρdudv − Ce−4ρdv2

]
, (1.1)

where C is a constant deformation parameter. When C = 0 , (1.1) becomes AdS3 with

the radius L . When C ̸= 0, we can put C = ±1 with the Lorentz boost,

u → λu , v → λ−1v (λ : const.) .

The AdS3 isometry SO(2, 2) = SL(2,R)L × SL(2,R)R is broken to SL(2,R)L × U(1)R
due to the non-vanishing C . According to SL(2,R)L × U(1)R , there are two descrip-

tions to describe the classical dynamics of the system, 1) the left description based on

SL(2,R)L and 2) the right description based on enhanced U(1)R.

In the former description 1), the Yangian symmetry is shown to be realized as a

hidden symmetry by improving the SL(2,R)L Noether current so that it satisfies the

flatness condition, following [21]. Then a Lax pair is constructed with the improved

current and the classical integrability is shown by deriving the r/s-matrix algebra. The

universality class of this system is rational as is expected from the presence of Yangian.

The argument here is quite similar to the previous works for squashed spheres and

warped AdS spaces [21, 22].

In the latter description 2), a non-local conserved current is presented by applying

a non-local map to the improved current as in the case of squashed sphere [23]. It

enhances U(1)R to a q-deformed Poincaré algebra [24, 25]. Then another Lax pair,

which also leads to the classical equations of motion exactly, is presented by taking

a scaling limit from the Lax pair in the case of warped AdS3 and the corresponding

r/s-matrices show that the system is rational. This means that the left and right

descriptions are equivalent at classical level. In fact, the two descriptions are equivalent

via a non-local map.

This paper is organized as follows. In section 2 three-dimensional Schrödinger

spacetimes are rewritten in terms of SL(2,R) group element. Then the action of

1It is worth mentioning about the very recent paper [17] in which an intimate connection between

the Schrödinger spacetimes [18] and the Kerr/CFT correspondence [19] is discussed.
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Schrödinger sigma models is introduced. In section 3 we study the classical integrability

in the left description based on the SL(2,R)L symmetry. In section 4 the classical

integrability is discussed in the right description based on enhanced U(1)R . Section 5

is devoted to conclusion and discussion. In Appendix A we explain the derivation of

Lax pair in the right description in detail.

2 Schrödinger sigma models

Schrödinger spacetime in any dimensions is homogeneous and can be described as a

coset [20]. Although the coset is non-reductive in general, an exception is the three-

dimensional case and the coset becomes reductive. We are confined to this case here-

after.

For the later convenient, let us introduce an SL(2,R) group element represented

by

g = e2vT
+

e2ρT
2

e2uT
−
. (2.1)

The SL(2,R) generators T a (a = 0, 1, 2) are expressed in terms of the standard Pauli

matrices like

T 0 =
i

2
σ2 , T 1 =

1

2
σ1 , T 2 =

1

2
σ3 ,

and the light-cone notation is defined as

T± =
1√
2

(
T 0 ± T 1

)
. (2.2)

They satisfy the relations[
T a, T b

]
= εabc T

c , Tr
(
T aT b

)
=

1

2
γab , (2.3)

where the anti-symmetric tensor εabc is normalized ε012 = +1 and the metric on R1,2 is

γab = (−1,+1,+1) . The group indices are raised and lowered with γab and its inverse.

As a result, the metric (1.1) can be rewritten as

ds2 =
L2

2

[
Tr
(
J2
)
− 2C

(
Tr
(
T−J

))2]
(2.4)

=
L2

4

[
−2J−J+ +

(
J2
)2 − C

(
J−)2]
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in terms of the left-invariant one-form J defined as

J ≡ g−1dg , Ja = 2Tr (T aJ) . (2.5)

It is easy to see that the metric (2.4) is invariant under the SL(2,R)L × U(1)R trans-

formation:

g → gL · g · e−αT−
. (2.6)

The infinitesimal SL(2,R)L and U(1)R transformations are given by, respectively,

δL,ag = ϵ T a g , (2.7)

δR,−g = −ϵ g T− . (2.8)

Here it should be noted that AdS3 has three kinds of anisotropic deformations,

i) space-like, ii) time-like and iii) null-like deformations. The Schrödinger spacetimes

correspond to null-like deformations of AdS3 . The metric of space-like warped AdS3 is

realized with a deformation term on T 1 as

ds2 =
L2

2

[
Tr
(
J2
)
− 2C̃

[
Tr(T 1J)

]2]
. (2.9)

The metric of time-like warped AdS3 is obtained with a deformation term on T 0 as

ds2 =
L2

2

[
Tr
(
J2
)
− 2C̃

[
Tr(T 0J)

]2]
. (2.10)

The null-like warped AdS3 is obtained from both space-like and time-like warped

AdS3 geometries by taking a scaling limit [18]. As an example, let us consider a space-

like warped AdS3 with a deformation parameter C̃ . The metric can be rewritten in

terms of T± as

ds2 =
L2

2

[
Tr
(
J2
)
− C̃

[
Tr(T+J)

]2
+ 2C̃Tr(T+J)Tr(T−J)− C̃

[
Tr(T−J)

]2]
.(2.11)

By rescaling T± as

T− →

√
2C

C̃
T− , T+ →

√
C̃

2C
T+ (2.12)

and taking C̃ → 0 limit with C fixed, the metric (2.4) is reproduced. The above

argument is applicable to time-like warped AdS3 as well.
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2.1 The action of Schrödinger sigma models

The action of Schrödinger sigma models is

S = −
∫∫

dtdx ηµν
[
Tr (JµJν)− 2CTr

(
T−Jµ

)
Tr
(
T−Jν

)]
. (2.13)

The base space is a two-dimensional Minkowski spacetime with the coordinates xµ =

(t, x) and the metric ηµν = (−1,+1). Although we have applications to string theory in

our mind, we do not impose periodic boundary conditions and the Virasoro conditions

for simplicity here, but the boundary condition that the group element variable g(x)

approaches a constant element very rapidly as it goes to spatial infinities:

g(t, x) → g(±) : const. (x → ±∞) . (2.14)

Thus the left-invariant current Jµ vanishes as it approaches spatial infinities,

Jµ(t, x) → 0 (x → ±∞) . (2.15)

The equations of motion obtained from (2.13) are

∂µJµ − 2CTr
(
T−∂µJµ

)
T− − 2CTr

(
T−Jµ

) [
Jµ, T−] = 0 . (2.16)

By multiplying T a to (2.16) and taking the trace operation, the T a component of the

equations of motion can be obtained. The T− component leads to the conservation law

of the U(1)R current,

∂µJ−
µ = 0 . (2.17)

The T 2 and T+ components are, respectively,

∂µJ2
µ − CJ−

µ J
−,µ = 0 , (2.18)

∂µJ+
µ − CJ−

µ J
2,µ = 0 . (2.19)

The equations of motion (2.16) are equivalent to (2.17)-(2.19).

In addition, the equations of motion (2.16) are equivalent to the conservation law

of the SL(2,R)L current,

∂µ
[
gJµg

−1 − 2CTr
(
T−Jµ

)
gT−g−1

]
= 0 . (2.20)

According to this observation on the equations of motion, one may expect that

there should be two ways to describe the classical dynamics of this system. Indeed,

this is the case. One description is based on the SL(2,R)L symmetry and the other is

on the enhanced U(1)R symmetry.
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3 Left description based on SL(2,R)L

In this section we consider the classical integrability of Schrödinger sigma models in

the left description based on the SL(2,R)L symmetry. First, we show that SL(2,R)L
symmetry is enhanced to an infinite-dimensional symmetry, the SL(2,R)L Yangian, by

improving the SL(2,R)L Noether current. Then we construct Lax pair and monodromy

matrix, and show the classical integrability by deriving the classical r/s-matrix algebra.

3.1 Yangian symmetry

The action (2.13) is invariant under the SL(2,R)L transformation (2.7). The corre-

sponding conserved SL(2,R)L current is

jLµ = gJµg
−1 − 2CTr

(
T−Jµ

)
gT−g−1 + ϵµν∂

νf . (3.1)

The first two terms can be obtained by the Noether procedure but the last term is the

ambiguity of the conserved current. The anti-symmetric tensor ϵµν on the base space

is normalized as ϵtx = +1 and f is an arbitrary function. When f is taken as

f = −
√
C gT−g−1 , (3.2)

then the current jLµ satisfies the flatness condition,

ϵµν
(
∂µj

L
ν − jLµ j

L
ν

)
= 0 . (3.3)

Thus the flat and conserved SL(2,R)L current has been obtained in Schrödinger sigma

models. This improved current enables us to construct an infinite number of conserved

“non-local” charges, for example, by following the BIZZ construction [26]. The first

two of them are

QL,a
(0) =

∫ ∞

−∞
dx jL,at (x) ,

QL,a
(1) =

1

4

∫ ∞

−∞

∫ ∞

−∞
dxdy ϵ(x− y)εa bc j

L,b
t (x)jL,ct (y)−

∫ ∞

−∞
dx jL,ax (x) , (3.4)

where ϵ(x− y) ≡ θ(x− y)− θ(y − x) and θ(x) is a step function.

The next is to compute the Poisson brackets of the charges. For this purpose,

the current algebra of the flat and conserved SL(2,R)L current is needed. It can

be computed by evaluating the standard Poisson brackets of the dynamical variables

contained in the classical action and is written down in terms of the component of the

current, e.g jL,aµ = 2Tr(T ajLµ ) ,{
jL,at (x), jL,bt (y)

}
P
= εabc j

L,c
t (x)δ(x− y) ,
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{
jL,at (x), jL,bx (y)

}
P
= εabc j

L,c
x (x)δ(x− y) + γab∂xδ(x− y) , (3.5){

jL,ax (x), jL,bx (y)
}
P
= 0 .

Note that the current algebra does not contain C explicitly and is exactly the same as

the SL(2,R)L current algebra in sigma models defined on undeformed AdS3 . It may be

natural if one notices that C can be absorbed into the normalization of the generators

by a simple rescaling,

T− → 1√
|C|

T− , T+ →
√

|C|T+ . (3.6)

Thus the Poisson brackets of the conserved charges are also the same as the AdS3 case,{
QL,a

(0) , Q
L,b
(0)

}
P
= εabc Q

L,c
(0) ,{

QL,a
(1) , Q

L,b
(0)

}
P
= εabc Q

L,c
(1) ,{

QL,a
(1) , Q

L,b
(1)

}
P
= εabc

[
QL,c

(2) +
1

12

(
QL

(0)

)2
QL,c

(0)

]
, (3.7)

and therefore an infinite number of conserved charges satisfy the SL(2,R)L Yangian

algebra, as a matter of course.

There is another way to reproduce the current algebra (3.5). The flat conserved

SL(2,R)L current is found in sigma models on space-like warped AdS3 (2.9) via a

double Wick rotation as discussed in [21]. The current algebra in the case of space-like

warped AdS3 is{
jL,at (x), jL,bt (y)

}
P
= εabc j

L,c
t (x)δ(x− y) ,{

jL,at (x), jL,bx (y)
}

P
= εabc j

L,c
x (x)δ(x− y) + (1 + C̃)γab∂xδ(x− y) ,{

jL,ax (x), jL,bx (y)
}
P
= −C̃ εabc j

L,c
t (x)δ(x− y) .

The rescaling (2.12) does not change the algebra at all. Thus, by taking the limit

C̃ → 0 , the current algebra (3.5) is reproduced.

3.2 Lax pair, monodromy matrix, r/s-matrices

The improved SL(2,R)L current enables us to construct a Lax pair,

LL
t (x;λ) =

1

1− λ2

[
jLt (x)− λjLx (x)

]
, LL

x (x;λ) =
1

1− λ2

[
jLx (x)− λjLt (x)

]
. (3.8)
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Here λ is a spectral parameter. The commutation relation[
∂t − LL

t (λ), ∂x − LL
x (λ)

]
= 0 (3.9)

reproduces the conservation law of the improved current (equivalently equations of

motion) and the flat condition.

Now let us introduce the monodromy matrix UL(λ) defined as

UL(λ) ≡ P exp

[∫ ∞

−∞
dxLL

x (x;λ)

]
. (3.10)

The symbol P denotes the path ordering. It is easy to see that the monodromy matrix

is conserved,

d

dt
UL(λ) = 0 . (3.11)

Thus it can be regarded as a generating function of conserved charges. The expression

of the conserved quantities depend on the expansion point. For example, when the

monodromy matrix is expanded around λ = ∞ , the Yangian charges we have discussed

so far are reproduced.

The Poisson bracket of LL,a
x (x;λ) is evaluated as

{
LL,a

x (x;λ), LL,b
x (y;µ)

}
P
=

1

λ− µ
εabc

[
µ2

1− µ2
Lc
x(x;λ)−

λ2

1− λ2
LL,c
x (x;µ)

]
δ(x− y)

− λ+ µ

(1− λ2)(1− µ2)
γab∂xδ(x− y) . (3.12)

With the tensor product notation, it can be rewritten as follows:{
LL

x (x;λ),⊗LL
x (y;µ)

}
P
=
[
rL(λ, µ), LL

x (x;µ)⊗ 1 + 1⊗ LL
x (x;µ)

]
δ(x− y)

−
[
sL(λ, µ), LL

x (x;µ)⊗ 1− 1⊗ LL
x (x;µ)

]
δ(x− y)

−2sL(λ, µ)∂xδ(x− y) . (3.13)

Here we have introduced classical r-matrix rL(λ, µ) and s-matrix sL(λ, µ) [27] , respec-

tively, defined as

rL(λ, µ) ≡ 1

2 (λ− µ)

(
µ2

1− µ2
+

λ2

1− λ2

)(
−T+ ⊗ T− − T− ⊗ T+ + T 2 ⊗ T 2

)
,

sL(λ, µ) ≡ λ+ µ

2 (1− λ2) (1− µ2)

(
−T+ ⊗ T− − T− ⊗ T+ + T 2 ⊗ T 2

)
. (3.14)
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It is easy to show the extended classical Yang-Baxter equation is satisfied,[
(r + s)L13(λ, ν), (r − s)L12(λ, µ)

]
+
[
(r + s)L23(µ, ν), (r + s)L12(λ, µ)

]
+
[
(r + s)L23(µ, ν), (r + s)L13(λ, ν)

]
= 0 , (3.15)

where the subscripts denote the vector spaces on which the r- and s-matrices act. Thus

the classical integrability has been shown in the left description.

4 Right description based on enhanced U(1)R

In this section, we describe the classical dynamics of Schrödinger sigma models in

the right description based on the enhanced U(1)R symmetry. We will show that the

broken components of SL(2,R)R are realized as non-local symmetries2. The algebra

of the corresponding conserved charges is found to be q-deformed two-dimensional

Poincaré algebra [24, 25]. In addition, the Lax pair related to the q-deformed Poincaré

symmetry is constructed. The resulting classical r/s-matrices also satisfies the classical

Yang-Baxter equation.

4.1 q-deformed Poincaré symmetry

We first show that q-deformed Poincaré symmetry is realized as a non-local symmetry

in Schrödinger sigma models .

Now the SL(2, ,R)R symmetry of the original AdS3 is broken to U(1)R due to the

deformation. This is generated by T− as in (2.8) and the conserved U(1)R current is

jR,−
µ = −2Tr(T−Jµ) = −J−

µ .

In contrast to the T− component, the other components generated by T 2 and T+ are

not the isometry of the Schrödinger spacetime. However, an important observation is

that there should be a non-local symmetry even in the case of Schrödinger spacetime,

in analogy with our previous work [23] on squashed spheres and warped AdS spaces.

By following the procedure in [23] and applying a simple non-local map3 to the flat and

conserved SL(2,R)L current, the non-local current is given by

jR,2
µ = −2e

√
C χTr

(
T 2g−1jLµ g

)
,

jR,+
µ = −2e

√
C χTr

(
T+g−1jLµ g

)
, (4.1)

jR,−
µ = −2Tr

(
T−g−1jLµ g

)
.

2For an earlier argument on non-locality of the right symmetry, based on a T-duality, see [28].
3This map is analogous to the Seiberg-Witten map [29].
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The non-locality comes through the non-local field χ defined as

χ(x) ≡ −1

2

∫ ∞

−∞
dy ϵ(x− y) jR,−

t (y) . (4.2)

The boundary conditions (2.14) ensure the convergence of the integral for an arbitrary

value of x .

The (2,+)-components of the non-local current are explicitly written down as

jR,2
µ = −2e

√
C χ
[
Tr(T 2Jµ) +

√
C ϵµνTr(T

−Jν)
]

= −e
√
C χ
(
J2
µ +

√
C ϵµνJ

−,ν
)
,

jR,+
µ = −2e

√
C χ
[
Tr(T+Jµ) + CTr(T−Jµ) +

√
C ϵµνTr(T

2Jν)
]

= −e
√
C χ
(
J+
µ + CJ−

µ +
√
C ϵµνJ

2,ν
)
. (4.3)

Note that χ satisfies the following relation,

ϵµν∂
νχ = −jR,−

µ . (4.4)

To show the conservation of the non-local currents, we need to use the relations (2.17)-

(2.19) and (4.4).

The standard Noether charge

QR,− =

∫ ∞

−∞
dx jR,−

t (x) (4.5)

generates the right action of U(1)R,

δR,−g =
{
g,QR,−}

P
= −gT− . (4.6)

Similarly, non-local charges

QR,2 =

∫ ∞

−∞
dx jR,2

t (x) , QR,+ =

∫ ∞

−∞
dx jR,+

t (x)

generate non-local transformations,

δR,2g =
{
g,QR,2

}
P
= −g

[
T 2e

√
Cχ −

√
CT−ξ2

]
,

δR,+g =
{
g,QR,+

}
P
= −g

[
T+e

√
Cχ −

√
CT−ξ+

]
. (4.7)
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Here we have introduced new non-local fields,

ξ2(x) = −1

2

∫ ∞

−∞
dy ϵ(x− y) jR,2

t (y) , ξ+(x) = −1

2

∫ ∞

−∞
dy ϵ(x− y) jR,+

t (y) .

Note that ξ2 and ξ+ are well defined under the boundary conditions (2.14). We can

directly check that the action (2.13) is invariant under the transformations (4.7). To

show the invariance, we need to use the equations of motion (2.16) and thus the non-

local transformations (4.7) are the on-shell symmetry.

The Poisson brackets of jRt (x) are{
jR,+
t (x), jR,−

t (y)
}

P
= −jR,2

t (x)δ(x− y) ,{
jR,+
t (x), jR,2

t (y)
}

P
= −e

√
C χjR,+

t (x)δ(x− y)−
√
C

2
ϵ(x− y)jR,+

t (x)e
√
C χjR,−

t (y)

=
1

2
jR,+
t (x)∂y

[
e
√
C χ(y)ϵ(x− y)

]
,{

jR,−
t (x), jR,2

t (y)
}

P
= e

√
C χjR,−

t (x)δ(x− y)

= − 1√
C
∂x

[
e
√
C χ(x)

]
δ(x− y) . (4.8)

With (4.8) and the relations

χ(±∞) = ∓1

2
QR,− , (4.9)

the Poisson brackets of QR,a are evaluated as{
QR,+, QR,−}

P
= −QR,2 ,{

QR,+, QR,2
}
P
= −QR,+ cosh

(√
C

2
QR,−

)
,

{
QR,−, QR,2

}
P
=

2√
C

sinh

(√
C

2
QR,−

)
. (4.10)

In the C → 0 limit, this algebra becomes the SL(2,R) algebra.

In order to get a familiar expression, let us rescale QR,+ as

QR,+ →
√
C

2
QR,+ . (4.11)

Then the algebra is rewritten as{
QR,+, QR,−}

P
= −

√
C

2
QR,2 ,
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{
QR,+, QR,2

}
P
= −QR,+ cosh

(√
C

2
QR,−

)
,

{
QR,−, QR,2

}
P
=

2√
C

sinh

(√
C

2
QR,−

)
(4.12)

and this algebra is known as a q-deformed Poincaré algebra [24, 25]. A two-dimensional

Poincaré algebra is reproduced from this expression in the C → 0 limit.

4.2 Lax pair, monodromy matrix. r/s-matrices

Let us next consider a Lax pair in the right description. The following Lax pair,

LR
t (x;λ) =

1

2

[
LR

+(x;λ) + LR
−(x;λ)

]
,

LR
x (x;λ) =

1

2

[
LR

+(x;λ)− LR
−(x;λ)

]
, (4.13)

LR
±(x;λ) = − 1

1± λ

{
−T+J−

± − T−
[
J+
± ∓ C

(
λ± λ2

2

)
J−
±

]
+ T 2J2

±

}
,

J± = Jt ± Jx

leads to the equations of motion (2.16). This Lax pair can be reproduced by taking

an appropriate scaling limit of the Lax pair in the warped AdS3 cases, as explained in

detail in Appendix.

It is a simple practice to show the commutation relation[
∂t − LR

t (λ), ∂x − LR
x (λ)

]
= 0 (4.14)

leads to the equations of motion and the monodromy matrix defined as

UR(λ) ≡ P exp

[∫ ∞

−∞
dxLR

x (x;λ)

]
(4.15)

is conserved:

d

dt
UR(λ) = 0 . (4.16)

The Poisson brackets of the spatial components of Lax pair are given by{
LR,−

x (x;λ), LR,+
x (y;µ)

}
P
=

1

λ− µ

[
µ2

1− µ2
LR,2
x (x;λ)− λ2

1− λ2
LR,2
x (x;µ)

]
δ(x− y)

+
λ+ µ

(1− λ2) (1− µ2)
∂xδ(x− y) ,
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{
LR,−
x (x;λ), LR,2

x (y;µ)
}
P
=

1

λ− µ

[
µ2

1− µ2
LR,−
x (x;λ)− λ2

1− λ2
LR,−
x (x;µ)

]
δ(x− y) ,

{
LR,+

x (x;λ), LR,2
x (y;µ)

}
P
=

1

λ− µ

[
− µ2

1− µ2
LR,+

x (x;λ) +
λ2

1− λ2
LR,+
x (x;µ)

]
δ(x− y)

+
C

2
(λ− µ)

λ2

1− λ2
LR,−

x (x;µ)δ(x− y) ,{
LR,−

x (x;λ), LR,−
x (y;µ)

}
P
= 0 ,{

LR,+
x (x;λ), LR,+

x (y;µ)
}
P
=

C

2
(λ− µ)

[
µ2

1− µ2
LR,2

x (x;λ) +
λ2

1− λ2
LR,2
x (x;µ)

]
δ(x− y)

−C

2

(λ+ µ) (λ− µ)2

(1− λ2) (1− µ2)
∂xδ(x− y) ,{

LR,2
x (x;λ), LR,2

x (y;µ)
}
P
= − λ+ µ

(1− λ2) (1− µ2)
∂xδ(x− y) .

With the tensor product notation, it is possible to rewrite the above brackets into a

simple form,{
LR
x (x;λ),⊗LR

x (y;µ)
}
P
=
[
rR(λ, µ), LR

x (x;µ)⊗ 1 + 1⊗ LR
x (x;µ)

]
δ(x− y)

−
[
sR(λ, µ), LR

x (x;µ)⊗ 1− 1⊗ LR
x (x;µ)

]
δ(x− y)

− 2sR(λ, µ)∂xδ(x− y) ,

where we have introduced the r- and s-matrices defined as, respectively,

rR(λ, µ) =
1

2 (λ− µ)

(
µ2

1− µ2
+

λ2

1− λ2

)(
−T+ ⊗ T− − T− ⊗ T+ + T 2 ⊗ T 2

)
+
C

4
(λ− µ)

(
µ2

1− µ2
+

λ2

1− λ2

)
T− ⊗ T− ,

sR(λ, µ) =
λ+ µ

2 (1− λ2) (1− µ2)

(
−T+ ⊗ T− − T− ⊗ T+ + T 2 ⊗ T 2

)
+
C (λ+ µ) (λ− µ)2

4 (1− λ2) (1− µ2)
T− ⊗ T− . (4.17)

It is easy to show that the extended classical Yang-Baxter equation is satisfied,[
(r + s)R13(λ, ν), (r − s)R12(λ, µ)

]
+
[
(r + s)R23(µ, ν), (r + s)R12(λ, µ)

]
+
[
(r + s)R23(µ, ν), (r + s)R13(λ, ν)

]
= 0 . (4.18)

Thus the classical integrability has been shown also in the right description.
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5 Conclusion and Discussion

We have discussed the classical integrable structure of Schrödinger sigma models. Its

classical dynamics can be described by the two descriptions, 1) the left description

based on SL(2,R)L and 2) the right description based on enhanced U(1)R .

The left description is based on the SL(2,R)L symmetry. The symmetry is en-

hanced to the Yangian symmetry. To construct the Yangian charges the flat and

conserved SL(2,R)L current is used. By using the current, one can also construct the

Lax pair. This Lax pair leads to the rational classical r/s-matrix algebra.

The right description is based on the enhanced U(1)R symmetry. We have shown

that a non-local symmetry is realized and it enhances U(1)R to a q-deformed Poincaré

symmetry. The Lax pair and monodromy matrix concerning the hidden symmetry have

also been constructed by taking a scaling limit of the Lax pair in sigma models defined

on warped AdS3 geometries. The classical r/s-matrices explicitly depend on the value

of C , but nevertheless those satisfy the classical Yang-Baxter equation.

The two descriptions are equivalent via a non-local map. In fact, as in the case of

squashed S3 and warped AdS3 [23], one can figure out the map between the improved

SL(2,R)L current and the non-local current concerning the enhanced U(1)R as follows:

jR,−
µ = −2Tr

(
T−g−1jLµ g

)
, jR,2

µ = −2e
√
CχTr

(
T 2g−1jLµ g

)
,

jR,+
µ = −2e

√
CχTr

(
T+g−1jLµ g

)
. (5.1)

Note that this is the map within the universality class of rational type, while there

exists a map between the rational and the trigonometric in cases of squashed S3 and

warped AdS3 .

One of the next steps is to construct and solve the corresponding lattice statistical

model, which should be called “null-deformed spin chain models (XXN model)”. It

seems non-diagonalizable and we are not sure whether it is well defined or not. It

may be interesting to consider how the Bethe ansatz equations are modified in this

system, for example, by taking a scaling limit. Indeed, quantum solutions for squashed

spheres are already known [30, 31, 32] and so it would not be difficult to extend them to

the warped AdS3 cases. The q-deformed Poincaré symmetry should be realized in the

“XXN model” and hence the S-matrix should get some constraint by the q-deformed

Poincaré symmetry. It would also be nice to analyze the Schrödinger sigma models at

quantum level following [33] as another direction.

It would be a challenging problem to try to extend the present argument to higher

dimensional cases. The coset does not satisfy the reductive condition any more, hence
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it would be difficult to follow the present analysis completely. However, since higher-

dimensional Schrödinger algebras always contain SL(2,R)L × U(1)R as a subalgebra,

we may expect to use he classical integrability discussed here to describe, at least, the

motions restricted to a subspace described as a three-dimensional Schrödinger space-

time.

It is also interesting to consider the relation of our result to the recent progress on

the Kerr/CFT correspondence [17] from the view point of integrability.
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Appendix

A Derivation of Lax pair in the right description

The derivation of the Lax pair in the right-description (4.13) is a bit complicated and

hence it is explained in detail here.

We begin with the action of sigma models defined on space-like warped AdS3 spaces,

S = −
∫∫

dtdx ηµν
[
Tr (JµJν)− 2C̃ Tr

(
T 1Jµ

)
Tr
(
T 1Jν

)]
. (A.1)

The classical equations of motion are

∂µJ0
µ + C̃J2

µJ
1,µ = 0 , ∂µJ1

µ = 0 , ∂µJ2
µ + C̃J0

µJ
1,µ = 0 . (A.2)

By performing a double Wick rotation to the Lax pair in the squashed S3 case [34]4,

the Lax pair in the warped AdS3 case is obtained as

LR
t (x;λ) =

1

2

[
LR
+(x;λ) + LR

−(x;λ)
]
, LR

x (x;λ) =
1

2

[
LR
+(x;λ)− LR

−(x;λ)
]
,

LR
±(x;λ) = − sinhα

sinh (α± λ)

[
−T 0J0

± + T 2J2
± +

cosh (α± λ)

coshα
T 1J1

±

]
, (A.3)

4We work on the notation used in [23]. The convention of left and right in [34] is opposite to us.
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J± = Jt ± Jx , C̃ = tanh2 α .

The following commutation relation[
∂t − LR

t (x;λ), ∂x − LR
x (x;λ)

]
= 0 (A.4)

leads to the equations of motion (A.2).

The next task is to perform the scaling limit to the Lax pair (A.3). Let us first

rewrite the Lax pair (A.3) by using T± and J± as

LR
±(x;λ) = − sinhα

sinh (α± λ)

[
−1

2

(
T+ + T−) (J+

± + J−
±
)
+ T 2J2

±

+
cosh (α± λ)

2 coshα

(
T+ − T−) (J+

± − J−
±
)]

. (A.5)

Consider the redefinition (2.12). J±
µ = 2Tr(T±Jµ) is also transformed under the redef-

inition as:

J−
µ →

√
2C

C̃
J−
µ , J+

µ →

√
C̃

2C
J+
µ . (A.6)

When rescaling as λ → αλ , the Lax pair has the following form,

LR
±(x;λ) = − sinhα

sinh [α (1± λ)]

×
(
−T+

[
1

2

(
1 +

cosh [α (1± λ)]

coshα

)
J−
± +

tanh2 α

4C

(
1− cosh [α (1± λ)]

coshα

)
J+
±

]
−T−

[
1

2

(
1 +

cosh [α (1± λ)]

coshα

)
J+
± +

C

tanh2 α

(
1− cosh [α (1± λ)]

coshα

)
J−
±

]
+T 2J2

±

)
. (A.7)

Taking a limit in which α → 0 with C and λ fixed, the Lax pair in the right description

of Schrödinger sigma models is obtained as

LR
± = − 1

1± λ

(
−T+J−

± − T−
[
J+
± ∓ C

(
λ± λ2

2

)
J−
±

]
+ T 2J2

±

)
. (A.8)

Note that the α → 0 limit is the same as C̃ → 0 because C̃ = tanh2 α .
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