5,710 research outputs found

    Aspects of Nucleon Chiral Perturbation Theory

    Get PDF
    I review recent progress made in the calculation of nucleon properties in the framework of heavy baryon CHPT. Topics include: Compton scattering, πN\pi N scattering, the anatomy of a low-energy constant and the induced pseudoscalar form factor.Comment: plain TeX (macro included), 12pp, lecture delivered at the workshop on "Chiral Dynamics: Theory and Experiments", MIT, July 25-29, 199

    Lattice Theories with Nonlinearly Realized Chiral Symmetry

    Full text link
    We present the lattice formulation of effective Lagrangians in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework both the Wilson term removing unphysical doubler fermions and the fermion mass term do not break chiral symmetry. Our lattice formulation allows us to address non-perturbative questions in effective theories of baryons interacting with pions and in models involving constitutent quarks interacting with pions and gluons. With the presented methods, a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering a complex action problem. This might lead to new insights into the phase diagram of strongly interacting matter at non-zero chemical potential.Comment: 3 pages, Lattice2003(chiral

    Nucleon-Deuteron Scattering from an Effective Field Theory

    Get PDF
    We use an effective field theory to compute low-energy nucleon-deuteron scattering. We obtain the quartet scattering length using low energy constants entirely determined from low-energy nucleon-nucleon scattering. We find ath=6.33a_{th}=6.33 fm, to be compared to aexp=6.35±0.02a_{exp}=6.35\pm 0.02 fm.Comment: 8 pages, Latex, epsfig, figures include

    Nonlocality of the NN interaction in an effective field theory

    Full text link
    We investigate low energy nucleon dynamics in the effective field theory (EFT) of nuclear forces. In leading order of the two-nucleon EFT we show that nucleon dynamics is governed by the generalized dynamical equation with a nonlocal-in-time interaction operator. This equation is shown to open new possibilities for applying the EFT approach to the description of low energy nucleon dynamics.Comment: 13 pages, 4 figures, REVTeX

    Adaptive Local-Global Analysis by pNh Transition Elements

    Get PDF
      &nbsp

    Palatini Variational Principle for NN-Dimensional Dilaton Gravity

    Get PDF
    We consider a Palatini variation on a general NN-Dimensional second order, torsion-free dilaton gravity action and determine the resulting equations of motion. Consistency is checked by considering the restraint imposed due to invariance of the matter action under simple coordinate transformations, and the special case of N=2 is examined. We also examine a sub-class of theories whereby a Palatini variation dynamically coincides with that of the "ordinary" Hilbert variational principle; in particular we examine a generalized Brans-Dicke theory and the associated role of conformal transformations.Comment: 16 pages, LaTe

    Renormalization of One-Pion Exchange and Power Counting

    Get PDF
    The renormalization of the chiral nuclear interactions is studied. In leading order, the cutoff dependence is related to the singular tensor interaction of the one-pion exchange potential. In S waves and in higher partial waves where the tensor force is repulsive this cutoff dependence can be absorbed by counterterms expected at that order. In the other partial waves additional contact interactions are necessary. The implications of this finding for the effective-field-theory program in nuclear physics are discussed.Comment: 19 pages, 18 figure

    Charge-Independence Breaking in the Two-Pion-Exchange Nucleon-Nucleon Force

    Get PDF
    Charge-independence breaking due to the pion-mass difference in the (chiral) two-pion-exchange nucleon-nucleon force is investigated. A general argument based on symmetries is presented that relates the charge-symmetric part of that force to the proton-proton case. The static potential linear in that mass difference is worked out as an explicit example by means of Feynman diagrams, and this confirms the general argument.Comment: 10 pages, latex, 1 figure -- epsfig.sty required -- To appear in Phys. Rev.

    Canonical Quantization Inside the Schwarzschild Black Hole

    Full text link
    We propose a scheme for quantizing a scalar field over the Schwarzschild manifold including the interior of the horizon. On the exterior, the timelike Killing vector and on the horizon the isometry corresponding to restricted Lorentz boosts can be used to enforce the spectral condition. For the interior we appeal to the need for CPT invariance to construct an explicitly positive definite operator which allows identification of positive and negative frequencies. This operator is the translation operator corresponding to the inexorable propagation to smaller radii as expected from the classical metric. We also propose an expression for the propagator in the interior and express it as a mode sum.Comment: 8 pages, LaTex. Title altered. One reference added. A few typos esp. eq.(7),(38) corrected. To appear in Class.Q.Gra
    corecore