69 research outputs found

    Multifactorial Regulation of a Hox Target Gene

    Get PDF
    Hox proteins play fundamental roles in controlling morphogenetic diversity along the anterior–posterior body axis of animals by regulating distinct sets of target genes. Within their rather broad expression domains, individual Hox proteins control cell diversification and pattern formation and consequently target gene expression in a highly localized manner, sometimes even only in a single cell. To achieve this high-regulatory specificity, it has been postulated that Hox proteins co-operate with other transcription factors to activate or repress their target genes in a highly context-specific manner in vivo. However, only a few of these factors have been identified. Here, we analyze the regulation of the cell death gene reaper (rpr) by the Hox protein Deformed (Dfd) and suggest that local activation of rpr expression in the anterior part of the maxillary segment is achieved through a combinatorial interaction of Dfd with at least eight functionally diverse transcriptional regulators on a minimal enhancer. It follows that context-dependent combinations of Hox proteins and other transcription factors on small, modular Hox response elements (HREs) could be responsible for the proper spatio-temporal expression of Hox targets. Thus, a large number of transcription factors are likely to be directly involved in Hox target gene regulation in vivo

    Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila melanogaster

    Get PDF
    Background: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. Methods and Findings: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genomewide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67–79 % and 56–66 % of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. Conclusions: We identified novel candidate genes associated with variation in resistance to oxidative stress that hav

    At the brink of eusociality: transcriptomic correlates of worker behaviour in a small carpenter bee

    Get PDF
    Background: There is great interest in understanding the genomic underpinnings of social evolution, in particular, the evolution of eusociality (caste-containing societies with non-reproductives that care for siblings). Subsociality is a key precursor for the evolution of eusociality and characterized by prolonged parental care and parent-offspring interaction. Here, we provide the first transcriptomic data for the small carpenter bee, Ceratina calcarata. This species is of special interest because it is subsocial and in the same family as the highly eusocial honey bee, Apis mellifera. In addition, some C. calcarata females demonstrate alloparental care without reproduction, which provides a unique opportunity to study worker behaviour in a non-eusocial species. Results: We uncovered similar gene expression patterns related to maternal care and sibling care in different groups of females. This agrees with the maternal heterochrony hypothesis, specifically, that changes in timing of offspring care gene expression are related to worker behaviour in incipient insect societies. In addition, we also detected some similarity to caste-related gene expression patterns in highly eusocial honey bees, and uncovered large lifetime changes in gene expression that accompany shifts in reproductive and maternal care behaviour. Conclusions: For Ceratina calcarata, we found that transcript expression profiles were most similar between sibling care and maternal care females. The maternal care behaviour exhibited post-reproductively by Ceratina mothers is concordant in terms of transcript expression with the alloparental care exhibited by workers. In line with theoretical predictions, our data are consistent with the maternal heterochrony hypothesis for the evolutionary development of worker behaviour in subsocial bees

    Valaciclovir to prevent Cytomegalovirus mediated adverse modulation of the immune system in ANCA-associated vasculitis (CANVAS):study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: The ANCA-associated vasculitides (AAV) are systemic autoimmune inflammatory disorders characterised by necrotising inflammation affecting small to medium-sized blood vessels. Despite improvements in survival, infection and cardiovascular disease remain leading causes of morbidity and mortality. Considerable evidence suggests that CD4 + CD28null T-cell expansions, predominantly seen in Cytomegalovirus (CMV) seropositive individuals, are associated with systemic dysregulation of immune function leading to a heightened risk of infection and cardiovascular disease. In patients with AAV, CD4 + CD28null expansions are driven by CMV and are associated with an increased risk of infection and mortality. The aim of this study is to explore in detail the ways in which CMV modulates the immune system and to determine whether treatment with valaciclovir blocks subclinical CMV reactivation in CMV seropositive AAV patients and ameliorates the CMV-induced adverse effects on the immune system. METHODS/DESIGN: CANVAS is a single-centre prospective open-label randomised controlled proof-of-concept trial of 50 adult CMV seropositive patients with stable AAV. Participants will be randomly allocated to receive valaciclovir orally (2 g QDS or reduced according to renal function) or no additional treatment for 6 months with an additional 6-month follow-up period. The primary outcome is the proportion of patients with CMV reactivation, as assessed by measurable viral load on quantitative blood and urine CMV polymerase chain reaction. The secondary outcomes are safety, change in the proportion of CD4+ CMV-specific T-cell population (defined as CD4 + CD28null cells) and change in soluble markers of inflammation from baseline to 6 months. Further tertiary and exploratory outcomes include persistence of the effect of valaciclovir on the proportion of CD4 + CD28null cells at 6 months post completion of treatment, change in the immune phenotype of CD4+ T cells and change in blood pressure and arterial stiffness parameters from baseline to 6 months. DISCUSSION: The results of this study will enable larger studies to be conducted to determine whether by controlling subclinical CMV reactivation, we can improve clinical endpoints such as infection and cardiovascular disease. The potential impact of this study is not limited to AAV, as CD4 + CD28null cells have been linked to adverse outcomes in other inflammatory conditions and in the context of an ageing immune system. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT01633476 (registered 29 June 2012). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13063-016-1482-2) contains supplementary material, which is available to authorized users

    Interaction of gap genes in the Drosophila head : tailless regulates expression of empty spiracles in early embryonic patterning and brain development

    No full text
    Unlike gap genes in the trunk region of Drosophila embryos, gap genes in the head were presumed not to regulate each other's transcription. Here, we show that in tailless (tll) loss-of-function mutants the empty spiracles (ems) expression domain in the head expands, whereas it retracts in tll gain-of-function embryos. We have identified a 304bp element in the ems-enhancer which is sufficient to drive expression in the head and brain and which contains two TLL and two BCD binding sites. Transgenic reporter gene lines containing mutations of the TLL binding sites demonstrate that tll directly inhibits the expression of ems in the early embryonic head and the protocerebral brain anlage. These results are the first demonstration of direct transcriptional regulation between gap genes in the head

    Expression, regulation and function of the homeobox gene empty spiracles in brain and ventral nerve cord development of Drosophila

    No full text
    We analyse the role of the empty spiracles (ems) gene in embryonic brain and ventral nerve cord development. ems is differentially expressed in the neurectoderm of the anterior head versus the trunk region of early embryos. A distal enhancer region drives expression in the deutocerebral brain anlage and a proximal enhancer region drives expression in the VNC and tritocerebral brain anlage. Mutant analysis indicates that in the anterior brain ems is necessary for regionalized neurogenesis in the deutocerebral and tritocerebral anlagen. In the posterior brain and VNC ems is necessary for correct axonal pathfinding of specific interneurons. Rescue experiments indicate that the murine Emx2 gene can partially replace the fly ems gene in CNS development

    Comparison of homeobox-containing genes of the honeybee and Drosophila.

    No full text
    • …
    corecore