27 research outputs found

    Flexible manipulator control experiments and analysis

    Get PDF
    Modeling and control design for flexible manipulators, both from an experimental and analytical viewpoint, are described. From the application perspective, an ongoing effort within the laboratory environment at the Ohio State University, where experimentation on a single link flexible arm is underway is described. Several unique features of this study are described here. First, the manipulator arm is slewed by a direct drive dc motor and has a rigid counterbalance appendage. Current experimentation is from two viewpoints: (1) rigid body slewing and vibration control via actuation with the hub motor, and (2) vibration suppression through the use of structure-mounted proof-mass actuation at the tip. Such an application to manipulator control is of interest particularly in design of space-based telerobotic control systems, but has received little attention to date. From an analytical viewpoint, parameter estimation techniques within the closed-loop for self-tuning adaptive control approaches are discussed. Also introduced is a control approach based on output feedback and frequency weighting to counteract effects of spillover in reduced-order model design. A model of the flexible manipulator based on experimental measurements is evaluated for such estimation and control approaches

    Decentralized Blocking Zeros and Decentralized Strong Stabilization Problem

    Get PDF
    Cataloged from PDF version of article.This paper is concerned with a new system theoretic concept, decentralized blocking zeros, and its applications in the design of decentralized controllers for linear time-invariant finitedimensional systems. The concept of decentralized blocking zeros is a generalization of its centralized counterpart to multichannel systems under decentralized control. Decentralized blocking zeros are defined as the common blocking zeros of the main diagonal transfer matrices and various complementary transfer matrices of a given plant. As an application of this concept, we consider the decentralized strong stabilization problem (DSSP) where the objective is to stabilize a plant using a stable decentralized controller. It is shown that a parity interlacing property should be satisfied among the real unstable poles and real unstable decentralized blocking zeros of the plant for the DSSP to be solvable. That parity interlacing property is also suf6icient for the solution of the DSSP for a large class of plants satisfying a certain connectivity condition. The DSSP is exploited in the solution of a special decentralized simultaneous stabilization problem, called the decentralized concurrent stabilization problem (DCSP). Various applications of the DCSP in the design of controllers for large-scale systems are also discussed

    Motion planning for multitarget surveillance with mobile sensor agents

    Full text link

    Vehicular traffic flow at an intersection with the possibility of turning

    Full text link
    We have developed a Nagel-Schreckenberg cellular automata model for describing of vehicular traffic flow at a single intersection. A set of traffic lights operating in fixed-time scheme controls the traffic flow. Open boundary condition is applied to the streets each of which conduct a uni-directional flow. Streets are single-lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flows dependence on the signalisation parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exist a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.Comment: 8 pages, 17 eps figures, Late

    A control engineer's guide to sliding mode control

    No full text

    Variable Structure Control in Automotive Control Systems

    No full text
    This work presents a control design for an automotive antilock braking systems. Our approach is based on the sliding mode control concept. We formulate the problem of achieving minimum stopping distance as that of extremum searching in a highly uncertain situation when the optimized function is not known analytically but its output values can be observed on-line. For the braking problem the magnitude of the tire/road friction force is a maximized variable. It is considered to be an output of a nonlinear dynamic system which includes the model of mechanical motion and equations of the hydraulic circuit. This setting is complicated by the optimized variable (friction force) not being directly measurable. To overcome this difficulty a sliding mode observer was designed
    corecore