46 research outputs found

    Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation II: RT-2/CZT payload

    Full text link
    Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high resolution devices for hard X-ray imaging and spectroscopic studies. The new series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of 20 keV to 150 keV, are used to image solar flares in hard X-rays. Since these modules are essentially manufactured for commercial applications, we have carried out a series of comprehensive tests on these modules so that they can be confidently used in space-borne systems. These tests lead us to select the best three pieces of the 'Gold' modules for the RT-2/CZT payload. This paper presents the characterization of CZT modules and the criteria followed for selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries, along with three CZT modules, a high spatial resolution CMOS detector for high resolution imaging of transient X-ray events. Therefore, we discuss the characterization of the CMOS detector as well.Comment: 26 pages, 19 figures, Accepted for publication in Experimental Astronomy (in press

    Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour

    Get PDF
    Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD
    corecore