459 research outputs found

    First proton-transfer study of 18F+p resonances relevant for novae

    Get PDF
    The 18F(p,α)15O reaction is the predominant destruction mechanism in novae of the radionuclide F18, a target of γ-ray observatories. Thus, its rate is important for understanding F18 production in novae. We have studied resonances in the 18F+p system by making a measurement of a proton-transfer reaction 18F(d,n). We have observed 15 Ne19 levels, 5 of which are below the proton threshold, including a subthreshold state, which has significant l p=0 strength. Our data provide a direct determination of the spectroscopic strength of these states and new constraints on their spins and parities, thereby resolving a controversy, which involves the 8- and 38-keV resonances. The 18F(p,α)15O reaction rate is reevaluated, which takes the subthreshold resonance and other new information determined in this experiment into account. © 2011 American Physical Society

    Single-nucleon transfer reactions on \u3csup\u3e18\u3c/sup\u3eF

    Get PDF
    Simultaneous measurement of the proton-transfer 18F(d,n) 19Ne and neutron-transfer 18F(d,p)19F reactions were performed with a 18F radioactive beam at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The experiments clarify the nuclear structure of 19Ne near the proton threshold, which is relevant for understanding the rates of proton-induced reactions on 18F in novae. Analogs for several states in the mirror nucleus 19F have not yet been identified in 19Ne, indicating that the level structure of 19Ne in this region is incomplete. We observed 15 levels in 19Ne from the 18F(d,n) 19Ne measurement and 18 levels in 19F from the 18F(d,p)19F measurement. Angular distributions were extracted for all strongly populated states and compared to distorted-wave Born approximation calculations. The angular distributions for all the known states in the two nuclei determined in this work are consistent with their previously assigned spins and parities. The spectroscopic factors determined for these levels in the two nuclei are reported. © 2011 American Physical Society

    Filling the Gaps in a Fragmented Health Care System:Development of the Health and Welfare Information Portal (ZWIP)

    Get PDF
    Background: Current health care systems are not optimally designed to meet the needs of our aging populations. First, the fragmentation of care often results in discontinuity of care that can undermine the quality of care provided. Second, patient involvement in care decisions is not sufficiently facilitated. Objective: To describe the development and the content of a program aimed at: (1) facilitating self-management and shared decision making by frail older people and informal caregivers, and (2) reducing fragmentation of care by improving collaboration among professionals involved in the care of frail older people through a combined multidisciplinary electronic health record (EHR) and personal health record (PHR). Methods: We used intervention mapping to systematically develop our program in six consecutive steps. Throughout this development, the target populations (ie, professionals, frail older people, and informal caregivers) were involved extensively through their participation in semi-structured interviews and working groups. Results: We developed the Health and Welfare Information Portal (ZWIP), a personal, Internet-based conference table for multidisciplinary communication and information exchange for frail older people, their informal caregivers, and professionals. Further, we selected and developed methods for implementation of the program, which included an interdisciplinary educational course for professionals involved in the care of frail older people, and planned the evaluation of the program. Conclusions: This paper describes the successful development and the content of the ZWIP as well as the strategies developed for its implementation. Throughout the development, representatives of future users were involved extensively. Future studies will establish the effects of the ZWIP on self-management and shared decision making by frail older people as well as on collaboration among the professionals involved. (JMIR Res Protoc 2012;1(2):e10) doi:10.2196/resprot.194

    IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    Full text link
    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the "first light" in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2, including the aim of instrumenting a 10km310\,\mathrm{km}^3 volume of clear glacial ice at the South Pole to deliver substantial increases in the astrophysical neutrino sample for all flavors. A detector of this size would have a rich physics program with the goal to resolve the sources of these astrophysical neutrinos, discover GZK neutrinos, and be a leading observatory in future multi-messenger astronomy programs.Comment: 20 pages, 12 figures. Address correspondence to: E. Blaufuss, F. Halzen, C. Kopper (Changed to add one missing author, no other changes from initial version.

    Search for non-relativistic Magnetic Monopoles with IceCube

    Get PDF
    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1km31\,\mathrm{km}^3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 1027cm210^{-27}\,\mathrm{cm^2} to 1021cm210^{-21}\,\mathrm{cm^2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 1022(1024)cm210^{-22}\,(10^{-24})\,\mathrm{cm^2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ901018(1017)cm2s1sr1\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}} at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure

    Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    Get PDF
    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δm322=2.720.20+0.19×103eV2\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\times 10^{-3}\,\mathrm{eV}^2 and sin2θ23=0.530.12+0.09\sin^2\theta_{23} = 0.53^{+0.09}_{-0.12} (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.Comment: 10 pages, 7 figure

    Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

    Get PDF
    A diffuse flux of astrophysical neutrinos above 100TeV100\,\mathrm{TeV} has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to 35TeV35\,\mathrm{TeV} and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the (fe:fμ:fτ)(1:1:1)(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of (0:1:0)(0:1:0)_\oplus is excluded at 3.3σ3.3\sigma, and a purely shower-like composition of (1:0:0)(1:0:0)_\oplus is excluded at 2.3σ2.3\sigma.Comment: 8 pages, 3 figures. Submitted to PR

    Lateral Distribution of Muons in IceCube Cosmic Ray Events

    Get PDF
    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations

    Search for Relativistic Magnetic Monopoles with IceCube

    Get PDF
    We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km3^{3}. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km3^{3} of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of \Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits for β0.8\beta\geq0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost γ\gamma below 10710^{7}. This result is then interpreted for a wide range of mass and kinetic energy values.Comment: 11 pages, 11 figures. v2 is minor text edits, no changes to resul
    corecore