6,375 research outputs found

    Achieving Good Angular Resolution in 3D Arc Diagrams

    Full text link
    We study a three-dimensional analogue to the well-known graph visualization approach known as arc diagrams. We provide several algorithms that achieve good angular resolution for 3D arc diagrams, even for cases when the arcs must project to a given 2D straight-line drawing of the input graph. Our methods make use of various graph coloring algorithms, including an algorithm for a new coloring problem, which we call localized edge coloring.Comment: 12 pages, 5 figures; to appear at the 21st International Symposium on Graph Drawing (GD 2013

    Drawing Trees with Perfect Angular Resolution and Polynomial Area

    Full text link
    We study methods for drawing trees with perfect angular resolution, i.e., with angles at each node v equal to 2{\pi}/d(v). We show: 1. Any unordered tree has a crossing-free straight-line drawing with perfect angular resolution and polynomial area. 2. There are ordered trees that require exponential area for any crossing-free straight-line drawing having perfect angular resolution. 3. Any ordered tree has a crossing-free Lombardi-style drawing (where each edge is represented by a circular arc) with perfect angular resolution and polynomial area. Thus, our results explore what is achievable with straight-line drawings and what more is achievable with Lombardi-style drawings, with respect to drawings of trees with perfect angular resolution.Comment: 30 pages, 17 figure

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    A Composite Chiral Pair of Rotational Bands in the odd-A Nucleus 135Nd

    Get PDF
    High-spin states in 135Nd were populated with the 110Pd(30Si,5n)135Nd reaction at a 30Si bombarding energy of 133 MeV. Two Delta(I)=1 bands with close excitation energies and the same parity were observed. These bands are directly linked by Delta(I)=1 and Delta(I)=2 transitions. The chiral nature of these two bands is confirmed by comparison with three-dimensional tilted axis cranking calculations. This is the first observation of a three-quasiparticle chiral structure and established the primarily geometric nature of this phenomenon.Comment: 10 pages, 5 figures (1 in color), 1 table, submitted to Physics Review Letters, written in REVTEX4 forma

    Lifetime Measurements in 120Xe

    Full text link
    Lifetimes for the lowest three transitions in the nucleus 120^{120}Xe have been measured using the Recoil Distance Technique. Our data indicate that the lifetime for the 21+01+2_{1}^{+} \to 0_{1}^{+} transition is more than a factor of two lower than the previously adopted value and is in keeping with more recent measurements performed on this nucleus. The theoretical implications of this discrepancy and the possible reason for the erroneous earlier results are discussed. All measured lifetimes in 120^{120}Xe, as well as the systematics of the lifetimes of the 21+_{1}^{+} states in Xe isotopes, are compared with predictions of various models. The available data are best described by the Fermion Dynamic Symmetry Model (FDSM).Comment: 9 pages, RevTeX, 3 figures with Postscript file available on request at [email protected], [email protected]. Submitted to Phys. Rev.

    In-beam spectroscopy of medium- and high-spin states in 133^{133}Ce

    Full text link
    Medium and high-spin states in 133^{133}Ce were investigated using the 116^{116}Cd(22^{22}Ne, 5n5n) reaction and the Gammasphere array. The level scheme was extended up to an excitation energy of 22.8\sim22.8 MeV and spin 93/2 . Eleven bands of quadrupole transitions and two new dipole bands are identified. The connections to low-lying states of the previously known, high-spin triaxial bands were firmly established, thus fixing the excitation energy and, in many cases, the spin parity of the levels. Based on comparisons with cranked Nilsson-Strutinsky calculations and tilted axis cranking covariant density functional theory, it is shown that all observed bands are characterized by pronounced triaxiality. Competing multiquasiparticle configurations are found to contribute to a rich variety of collective phenomena in this nucleus.Comment: 20 pages, 11 figure

    Testing the Mutually Enhanced Magicity Effect in Nuclear Incompressibility via the Giant Monopole Resonance in the 204,206,208^{204,206,208}Pb Isotopes

    Full text link
    Using inelastic α\alpha-scattering at extremely forward angles, including 00^\circ, the strength distributions of the isoscalar giant monopole resonance (ISGMR) have been measured in the 204,206,208^{204,206,208}Pb isotopes in order to examine the proposed mutually enhanced magicity (MEM) effect on the nuclear incompressibility. The MEM effect had been suggested as a likely explanation of the "softness" of nuclear incompressibility observed in the ISGMR measurements in the Sn and Cd isotopes. Our experimental results rule out any manifestation of the MEM effect in nuclear incompressibility and leave the question of the softness of the open-shell nuclei unresolved still.Comment: Accepted for publication in Physics Letters B. Very minor changes in tex

    Excitation of Giant Monopole Resonance in 208^{208}Pb and 116^{116}Sn Using Inelastic Deuteron Scattering

    Get PDF
    The excitation of the isoscalar giant monopole resonance (ISGMR) in 116^{116}Sn and 208^{208}Pb has been investigated using small-angle (including 00^\circ) inelastic scattering of 100 MeV/u deuteron and multipole-decomposition analysis (MDA). The extracted strength distributions agree well with those from inelastic scattering of 100 MeV/u α\alpha particles. These measurements establish deuteron inelastic scattering at Ed_d \sim 100 MeV/u as a suitable probe for extraction of the ISGMR strength with MDA, making feasible the investigation of this resonance in radioactive isotopes in inverse kinematics.Comment: 5 pages, 4 figures. To be published in Phys. Lett.

    Are There Nuclear Structure Effects on the Isoscalar Giant Monopole Resonance and Nuclear Incompressibility near A~90?

    Get PDF
    "Background-free" spectra of inelastic α\alpha-particle scattering have been measured at a beam energy of 385 MeV in 90,92^{90, 92}Zr and 92^{92}Mo at extremely forward angles, including 0^{\circ}. The ISGMR strength distributions for the three nuclei coincide with each other, establishing clearly that nuclear incompressibility is not influenced by nuclear shell structure near AA\sim90 as was claimed in recent measurements.Comment: 5 pages, 4 figures; accepted for publication in Phys. Lett.
    corecore