11,809 research outputs found

    Entanglement scaling in critical two-dimensional fermionic and bosonic systems

    Full text link
    We relate the reduced density matrices of quadratic bosonic and fermionic models to their Green's function matrices in a unified way and calculate the scaling of bipartite entanglement of finite systems in an infinite universe exactly. For critical fermionic 2D systems at T=0, two regimes of scaling are identified: generically, we find a logarithmic correction to the area law with a prefactor dependence on the chemical potential that confirms earlier predictions based on the Widom conjecture. If, however, the Fermi surface of the critical system is zero-dimensional, we find an area law with a sublogarithmic correction. For a critical bosonic 2D array of coupled oscillators at T=0, our results show that entanglement follows the area law without corrections.Comment: 4 pages, 4 figure

    Controlling internal barrier in low loss BaTiO3 supercapacitors

    Get PDF
    Supercapacitor behavior has been reported in a number of oxides including reduced BaTiO3 ferroelectric ceramics. These so-called giant properties are however not easily controlled. We show here that the continuous coating of individual BaTiO3 grains by a silica shell in combination with spark plasma sintering is a way to process bulk composites having supercapacitor features with low dielectric losses and temperature stability. The silica shell acts both as an oxidation barrier during the processing and as a dielectric barrier in the final composite

    High-frequency dielectric spectroscopy of batio3 core - silica shell nanocomposites: Problem of interdiffusion

    Get PDF
    Three types of BaTiO3 core - amorphous nano-shell composite ceramics were processed from the same core-shell powder by standard sintering, spark-plasma sintering and two-step sintering techniques and characterized by XRD, HRSEM and broad-band dielectric spectroscopy in the frequency range 10^3 - 10^13 Hz including the THz and IR range. The samples differed by porosity and by the amount of interdiffusion from the cores to shells, in correlation with their increasing porosity. The dielectric spectra were also calculated using suitable models based on effective medium approximation. The measurements revealed a strong dielectric dispersion below the THz range, which cannot be explained by the modeling, and whose strength was in correlation with the degree of interdiffusion. We assigned it to an effect of the interdiffusion layers, giving rise to a strong interfacial polarization. It appears that the high-frequency dielectric spectroscopy is an extremely sensitive tool for detection of any gradient layers and sample inhomogeneities even in dielectric materials with negligible conductivity

    Area limit laws for symmetry classes of staircase polygons

    Full text link
    We derive area limit laws for the various symmetry classes of staircase polygons on the square lattice, in a uniform ensemble where, for fixed perimeter, each polygon occurs with the same probability. This complements a previous study by Leroux and Rassart, where explicit expressions for the area and perimeter generating functions of these classes have been derived.Comment: 18 pages, 3 figure

    Spectroscopic evidence for temperature-dependent convergence of light and heavy hole valence bands of PbQ (Q=Te, Se, S)

    Full text link
    We have conducted temperature dependent Angle Resolved Photoemission Spectroscopy (ARPES) study of the electronic structures of PbTe, PbSe and PbS. Our ARPES data provide direct evidence for the \emph{light} hole upper valence bands (UVBs) and hitherto undetected \emph{heavy} hole lower valence bands (LVBs) in these materials. An unusual temperature dependent relative movement between these bands leads to a monotonic decrease in the energy separation between their maxima with increasing temperature, which is referred as band convergence and has long been believed to be the driving factor behind extraordinary thermoelectric performances of these compounds at elevated temperatures.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1404.180

    Propagation Characteristics of International Space Station Wireless Local Area Network

    Get PDF
    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis

    Strong Collapse Turbulence in Quintic Nonlinear Schr\"odinger Equation

    Full text link
    We consider the quintic one dimensional nonlinear Schr\"odinger equation with forcing and both linear and nonlinear dissipation. Quintic nonlinearity results in multiple collapse events randomly distributed in space and time forming forced turbulence. Without dissipation each of these collapses produces finite time singularity but dissipative terms prevents actual formation of singularity. In statistical steady state of the developed turbulence the spatial correlation function has a universal form with the correlation length determined by the modulational instability scale. The amplitude fluctuations at that scale are nearly-Gaussian while the large amplitude tail of probability density function (PDF) is strongly non-Gaussian with power-like behavior. The small amplitude nearly-Gaussian fluctuations seed formation of large collapse events. The universal spatio-temporal form of these events together with the PDF for their maximum amplitudes define the power-like tail of PDF for large amplitude fluctuations, i.e., the intermittency of strong turbulence.Comment: 14 pages, 17 figure
    corecore